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Abstract

Models of learning about economic crises generate risk premia that rise at the onset of a crisis,
but then fall as belief uncertainty fades. In contrast, empirical risk premia remain elevated during
crises. We resolve this tension via leverage dynamics generated by the impact of learning on
optimal default and capital structure decisions within a representative agent consumption-based
model. Endogenously time-varying leverage creates a feedback loop: the learning-induced slow
recovery in equity prices raises leverage, thereby further depressing equity values and keeping
the equity premium and credit spreads persistently high as the crisis unfolds. We structurally
estimate the model and show it closely matches the joint dynamics of consumption, equity risk
premia, credit risk, and leverage, especially during crises, together with the term structure of credit
risk and default probabilities.
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1 Introduction

Equity returns, credit spreads, and corporate leverage fluctuate over time. Moreover, such fluctuations
are of crucial interest to investors, who aim to make informed decisions related to capital allocation,
investment, and borrowing. While financial economists have had success in understanding the av-
erage size of equity returns, credit spreads and leverage', understanding their joint fluctuations and
connecting them to macroeconomic dynamics is more challenging.

During times of crisis, such as the Great Depression, cumulative equity returns fall for multiple
years and take a long time to recover (see Ghaderi, Kilic, and Seo (2022)). Similarly, credit spreads
rise together with corporate leverage (see Kuehn, Schreindorfer, and Schulz (2023)) but do not quickly
return to pre-crisis levels. Existing models of asset prices, however, fail to replicate the dynamics of
the equity market during the Great Depression, as we show in Figure 1. This is true for models of
time-varying rare disasters (Gabaix, 2012; Wachter, 2013; Seo and Wachter, 2018) and even for models
of learning (Wachter and Zhu, 2019) — such models successfully generate negative equity returns and
an escalation in credit risk at the onset of a crisis but fail to replicate the long-lasting negative impact
of crises as equity values recover too quickly relative to their empirical counterparts.

In this paper, we argue that leverage dynamics and learning about the stochastic frequency of
jumps in consumption are the fundamental building blocks to understanding the long-lasting impact
of crises on financial markets. To this end, we develop and estimate a model of asset prices with
optimal default and leverage decisions to understand the joint time series of equity returns, credit
spreads, and corporate leverage. We do so by embedding a firm-level model of optimal default and
capital structure inside a consumption-based model with an Epstein-Zin representative agent with
imperfect information about the consumption process’s stochastic jump intensity but the ability to
learn about its current value from observing consumption data.

Figure 1 depicts the cumulative drop in the U.S. equity market during the Great Depression (red
line) and compares it with simulated data from a series of nested models. The full model features both
learning and leverage — its implied equity dynamics match the data much more closely than any of the
nested models. Learning alone (as in Ghaderi, Kilic, and Seo (2022); Wachter and Zhu (2019)) slows
down the recovery in asset prices because agents learn quickly that they are in a high jump intensity
regime but only discover slowly that they are not. While this feature is necessary, it is not sufficient
to generate quantitatively realistic return dynamics during crises. With the addition of endogenously

time-varying leverage, there is a feedback loop: the slow recovery in equity prices raises leverage, which

1See for example, Campbell and Cochrane (1999), Bansal and Yaron (2004) who focus on aggregate equity returns
and Bhamra, Kuehn, and Strebulaev (2010b), Chen (2010) who study equity returns, credit spreads and leverage.



Figure 1: Great Depression — Equity Market

This figure presents cross-sectional averages of 10,000 model simulations, where the cumulative drop in
annual consumption growth equals approximately 17%, akin to the decline observed during the Great
Depression. The simulated data is aligned so that the beginning of a crisis corresponds to time 0, which
is the beginning of 1930 in the data. The red line represents the daily, cum-dividend, inflation-adjusted
cumulative equity return on the CRSP Index observed during the Great Depression. All other lines
represent the daily, cum-dividend, cumulative equity return averaged across 125 individual firms and
simulations generated by four different modes. Blue lines represent models with learning, yellow lines
represent models with full information. Solid lines depict models with leverage, dashed lines depict
models without leverage.
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further reduces equity values. Thus, leverage amplifies the learning-induced slow recovery.

The statistical properties of consumption are an essential feature of all consumption-based models.
We assume that consumption growth is driven by both Brownian shocks and jumps with stochastic
intensity. We calibrate our consumption process to match the size and duration of the U.S. Great
Depression and likelihood of consumption disasters from Barro and Ursua (2012) as well as the first
four moments of U.S. consumption growth for the calm post-war sample. Confronting our model
with the data in this manner forces us away from existing consumption disaster calibrations (see, for
example, Rietz (1988) Martin (2008), Gabaix (2012)), and Wachter (2013)) and towards a calibration
with starkly different properties. Relative to standard calibrations, our model features a low jump
intensity state, representing normal times, and a high jump intensity state with more frequent jumps,
representing severe recessions. Importantly, the typical high jump intensity episode does not lead
to a disaster, as defined by Barro (2006). Economic disasters, where consumption drops by at least
10%, are rare and unfold slowly over time as a series of smaller jumps, as opposed to a single large
decline. To acknowledge the challenges faced by economic agents in estimating a consumption process
featuring downward jumps to represent crises, we make the stochastic consumption disaster intensity

unobservable — the representative agent learns the intensity by observing consumption and engaging



in Bayesian updating.

Given our calibration of the consumption process and a representative household equipped with
Epstein-Zin preferences, we perform a structural estimation to determine parameter values that affect
the firm-level earnings process and corporate financing decisions. The data on which we base our
structural estimation span 2003 to 2022 and include CDX prices, firm-level returns, and leverage for
the 125 firms in the CDX index at any time. Similar to Seo and Wachter (2018), we also price a CDX
contract within a consumption-based asset pricing framework. As Seo and Wachter (2018) model
default as the event whereby a firms value falls below an exogenous threshold, the CDX price is only
a function of the aggregate jump intensity. In contrast, we model optimal default, where the distance-
to-default is firm-specific. Consequently, the entire earnings distribution of the 125 index constituents
is relevant for the pricing of CDX contracts. To make the estimation feasible, we approximate the
earnings distribution with average cross-sectional leverage.

Given some predefined parameters for which the literature has strong priors, we estimate the size of
idiosyncratic and aggregate Brownian risk, the idiosyncratic jump size, and bankruptcy cost parameters
based on seven moments constructed from our sample: the mean and standard deviations of excess
returns, leverage, and 5-year CDX rates together with the standard deviation of market excess return.
Overall, the model closely matches the data well. The model generates a large equity premium of
9.5%, volatile equity returns of 33.8%, realistic leverage of 27.4%, smooth market returns with 14.4%
dispersion, and a 5-year CDX rate of 72 basis points.

We also study the joint term structure of CDX rates and physical default probabilities. Our
structural estimation was not designed to match physical default probabilities and targeted only the
5-year CDX rate. Nevertheless, our model can closely match the joint term structure of CDX rates
and physical default probabilities from 1 year out to 10 years. At the short end, the average 1-year
CDX rate is 21 basis points in the model compared to 22 basis points in the data; at the long end, the
average 10-year CDX rate is 138 basis points in the model compared to 113 bps in the data. We stress
that our model’s ability to capture these two distinct term structures is not hardwired but instead
provides an external validation of the underlying economic mechanisms.

Having estimated our model on data from 2003 to 2022, we simulate an event designed to represent
the Great Depression and compare the resulting dynamics for the equity and credit market with the
data. The major input for the simulation is the consumption path, which is designed to match the
cumulative drop in annual consumption growth of approximately 17% during the Great Depression.
The full model with learning and leverage replicates well the equity market losses during the Great

Depression. Leverage magnifies losses to equity holders at the beginning of a crisis, and learning slows



down the recovery during a crisis. In contrast, in the perfect information model, the equity market
recovers swiftly when the economy switches into to low risk regime.

Similarly, learning magnifies credit risk. Even though firms are optimally more levered when they
know the economic state, leverage and credit risk rise more in the full model with learning than in
the perfect information model. The reason is a feedback loop between learning and leverage. The
slow recovery in equity prices raises leverage, which further depresses equity values. Thus, leverage
amplifies the learning-induced slow recovery.

Models of learning about crises must grapple with a significant challenge: in such models, (condi-
tional) equity risk premia rise at the onset of a crisis but then swiftly decline. A key economic insight
from Collin-Dufresne, Johannes, and Lochstoer (2016) exemplifies this problem: when the representa-
tive agent has a preference for earlier resolution of intertemporal risk, the equity risk premium increases
with uncertainty about beliefs. Importantly, belief uncertainty only increases at the beginning of a
crisis — as the crisis unfolds, it becomes increasingly obvious to the agent that the economy is not in
a calm period, and so her belief uncertainty and the associated learning risk premium in the model
declines, dragging down the model-based equity risk premium and credit risk measures, while their
empirical counterparts continue to climb — Wachter and Zhu (2019) show this explicitly for the equity
risk premium.? However, in the data, risk premia and measures of credit risk remain elevated during
crises. Surprisingly, our model replicates this feature of the data: the levered equity risk premium and
credit risk remain elevated as a crisis unfolds.

The impact of learning on optimal corporate financing decisions drives this pivotal result. As
firm-level cashflows continue to decline, the distance-to-default shrinks, which increases leverage and,
hence, the levered equity risk premium and credit risk. Crucially, the optimal default boundary does
not depend on belief uncertainty but on the level of beliefs — a decrease in belief uncertainty does not
disturb the leverage-based amplification mechanism. Instead, an increase in the agent’s belief that the
economy is in the high risk state raises the optimal default boundary, and so the impact of downward
jumps in earnings on the distance-to-default is amplified by learning. Significantly, this amplification
continues as an economic crisis builds, even though belief uncertainty declines. Therefore, the economic
impact of learning on levered risk premia differs markedly from its unlevered equivalents — levered risk

premia can rise even though belief uncertainty decreases, provided leverage increases.

2Wachter and Zhu (2019) study a model of rare crises with learning about the stochastic rate of crisis arrival — their
Figure 1 shows clearly how the equity risk premium in the model shoots up when a disaster is realized and declines from
thereon.



1.1 Related Literature

A growing literature seeks to provide a consumption-based explanation of not only stock market re-
turns, but also credit risk and corporate leverage by integrating optimal default and capital structure
decisions (see Leland (1994) and Goldstein, Ju, and Leland (2001)) within a representative-agent,
consumption-based framework. Bhamra, Kuehn, and Strebulaev (2010b), Bhamra, Kuehn, and Stre-
bulaev (2010a), and Chen (2010) assume the presence of long-run risk in consumption and do not
attempt to replicate the observed times series dynamics. Kuehn, Schreindorfer, and Schulz (2023)
assume consumption is subject to persistent crises and additionally analyze S&P100 option prices and
the mean 5-year CDS rates for S&P500 firms. Relative to Kuehn, Schreindorfer, and Schulz (2023),
we calibrate consumption to match the distribution of post-war consumption data, create additional
time variation in asset prices and leverage via learning, and achieve an out-of-sample match of the
joint term structure of physical default probabilities and CDX rates.

There is an extensive literature on learning and asset prices.® David (1997a) and Veronesi (2000)
study how learning about unobservable expected consumption growth impacts equity returns. More
recently, Collin-Dufresne, Johannes, and Lochstoer (2016) show that parameter learning creates long-
run risk, which is priced when agents have a preference for earlier resolution of intertemporal risk.
Johannes, Lochstoer, and Mou (2010) study how a combination of parameters, states, and model un-
certainty in consumption-based models impacts asset return moments and the aggregate price-dividend
ratio’s sample path. The vast majority of this literature focuses on equity returns, including models
with learning about rare disasters: Koulovatianos and Wieland (2016) and Wachter and Zhu (2019).
Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015) study how learning impacts credit risk but
does not feature optimal default decisions. While both Klein (2007) and Opp (2019) study optimal de-
fault impacted by learning, neither paper studies the interaction between optimal corporate financing
decisions, equity returns, and credit risk. Hennessy and Radnaev (2016) develop a representative-agent
model with a cross-section of firms subject to rare disasters, where the disaster arrival rate is stochastic
and unobservable. While firm-level corporate financing decisions are optimal, firms only live for one
period before being replaced. Consequently, each firm’s leverage is chosen afresh each period, and so,
aggregate leverage falls immediately when a disaster occurs. In our framework, firms live for rela-
tively long time intervals, so leverage is not reset continuously, and therefore aggregate leverage rises
throughout the majority of a crisis, and is a key driver of the resulting rise in the equity risk premium

and CDX rates. In contrast with the existing literature, in our paper, learning impacts the intricate

3Ziegler (2003) and Pastor and Veronesi (2009) provide surveys of the literature.



interactions between levered asset prices and corporate financing decisions in a manner consistent with
empirical observations.

Our paper is also related to the recent literature on CDX pricing. Seo and Wachter (2018) study
CDX rates across tranches in a consumption-based model with time-varying rare events risk, where
default occurs when firm value reaches or crosses an exogenous boundary. Collin-Dufresne, Junge,
and Trolle (2022) model asset values under the risk-neutral measure and feature an exogenously time-
varying default boundary with the aim of studying the extent to which equity option and CDX markets
are integrated. Doshi, Ericsson, Fournier, and Seo (2021) also study the extent to which equity option
and CDX markets are integrated, but model asset values under the physical measure. Unlike the above
papers, we model cashflow risk to shareholders and bondholders separately, together with optimal
capital structure and default decisions.

The literature on rare disasters employs a very different consumption calibration relative to our
paper. The majority of the literature focuses exclusively on equity risk — see, for example, Rietz (1988),
Barro (2006), Nakamura, Steinsson, Barro, and Ursua (2013), and Wachter (2013). Liu, Pan, and Wang
(2005), Seo and Wachter (2019), and Barro and Liao (2021) extend the rare disaster approach to equity
option prices. Gabaix (2012) studies a wide range of asset pricing puzzles with a time-varying rare
disaster probability, but does not examine the role of optimal default and leverage. Christoffersen, Du,
and Elkamhi (2017) use a consumption-based model with habit formation and constant disaster arrival
rate to study credit risk, credit risk derivatives and equity derivatives, but does not consider optimal
default and capital structure decisions or learning. In terms of the consumption calibration, Ghaderi,
Kilic, and Seo (2022) also deviate from the usual disaster calibration and use a form of multilayered
learning to match the behavior of the equity risk premium during crises, but they abstract from leverage
and do not consider assets exposed to credit risk.

The remainder of the paper is organized as follows. Section 2 presents the asset-pricing block of
the model: a representative agent consumption-based model with learning and a discussion of how
consumption dynamics are calibrated. Section 3 presents the corporate finance block of the model:
a firm-level model of optimal default and capital structure decisions is embedded within the asset
pricing block, we derive levered equity prices, corporate bond prices, and describe how CDX rates
are computed. Section 4 describes the data and presents the empirical results. Finally, Section 5
concludes. Appendix A summarizes notation, Appendix B includes omitted proofs, and Appendix C

derives results for special case of no learning.



2 Consumption, Learning Dynamics, and the Stochastic Dis-
count Factor

We embed a model of optimal corporate financing for a cross-section of firms inside a representative
agent consumption-based asset pricing model. The key novelty of our model relative to the existing
literature (see Bhamra, Kuehn, and Strebulaev (2010b) and Chen (2010)) is a common rare disaster
shock affecting both aggregate consumption and firm-level earnings, where the disaster probability is
stochastic and unobservable. The representative agent forms and updates subjective beliefs about the
disaster probability by observing consumption. Crucially, the representative agent’s beliefs impact her

optimal capital structure and default decisions at the firm-level.

2.1 Consumption Dynamics

We describe the aggregate consumption process, which is superficially the same as Wachter and Zhu
(2019). However, our approach to modeling rare disasters differs markedly from Wachter and Zhu
(2019) and leads to a distinct calibration described in Section 2.2.

The exogenous aggregate consumption process is given by

dOt _ _Zc +
o pedt + ocdBe + (e — 1)dNt, (1)

where B, is a standard Brownian motion and N is a Poisson process with unobservable intensity Ay
under the objective physical probability measure P. We interpret Brownian increments to consumption
growth as small, highly frequent shocks, while the Poisson shock is less frequent but larger. When the
Poisson process N increases by one, log consumption jumps by the random amount —Z. < 0, where
Z, is an exponentially distributed random variable with mean 1/e. > 0 under P.* The processes B.,
N, and Z, are independent.

The unobservable jump intensity, A, is driven by a continuous-time Markov chain which switches
randomly between two risk-states: state L (the low risk state), where A\; = Ap and state H (the high
risk state), where \; = Ag. The physical transition rate from state L into state H is ¢y, while the
physical transition rate from state H into state L is ¢y .

The representative agent does not observe the physical transition intensity, A¢, but she does know
all other parameters for the consumption process, the physical transition intensities for the Markov

chain and observes consumption. She therefore learns about the jump intensity and we assume she does

4We note that, conditional on a jump occuring the mean jump in consumption growth is given by

Ei_[e=Zet —1|dNy = 1] = —

<0,
1+ ec

and so we define J. = ﬁ
¢



so in a Bayesian manner, observing consumption and updating her prior belief that the jump intensity
is in the high-risk state to form a posterior. We describe her preferences and learning dynamics in
Section 2.3.

The traditional approach to modeling consumption disasters assumes such disasters unfold instan-
taneously in continuous-time models (see, e.g. Martin (2008) and Wachter (2013)), and over one
time period in discrete-time models (see e.g. Rietz (1988), Gabaix (2012)). Empirically, disasters
unfold over multiple periods, i.e. they are slow-moving and treating them as single period events may
overstate their riskiness (see Constantinides (2008) and Julliard and Ghosh (2012)).

In contrast with the traditional approach, we assume disasters are slow-moving (see Nakamura,
Steinsson, Barro, and Ursua (2013) and Ghaderi, Kilic, and Seo (2022)). Therefore, unlike the tradi-
tional approach, a single downward jump in consumption is not large enough to be a disaster. Instead,
we define a consumption disaster as a path segment during which consecutive annual growth rates
of consumption are negative and cumulatively result in a drop of more than 10% (Barro and Ursua
(2012) use this definition). Therefore, several downward jumps in close succession are needed for a
disaster to occur. We can achieve this within a continuous-time model with smaller jump sizes, but

higher jump intensities relative to the traditional approach.

2.2 Calibration of Consumption Dynamics

In this section, we describe how we calibrate the exogenous aggregate consumption process defined in
(1). The seven parameters we need to pin down are summarized in Panel A of Table 1 and the results
of the calibration are given in Table 2.

We aim to match the dynamics of consumption growth for both (i) the ‘long sample’, going back
to 1929 and thus containing the Great Depression and (ii) the calm ‘post-war sample’ starting in 1947.
We do so by matching three statistical moments from the long sample and four from the post-war
sample.

We now explain which features of the long-sample we calibrate to. Following Barro (2006), we define
consumption disasters as consecutive negative annual consumption growth rates where the cumulative
drop exceeds 10%. The data set of Barro and Ursua (2012) features 125 consumption disasters in
28 countries, dating back as far as 1870 and ending in 2009. In this data set, disasters have an
average duration of 3.7 years (44 months), are associated with an average drop in total consumption
expenditures of 21.6%, and a likelihood of occurring of 3.6%. The Great Depression in the United
States is representative of these events, with a drop in total consumption expenditures of 20.8% over

44 months (August 1929 to March 1933).



A drawback of the international dataset of Barro and Ursua (2012) is that consumption growth
measures total consumption expenditures, whereas asset pricing models are typically calibrated based
on nondurables and services consumption because this measure corresponds more closely to the concept
of consumption in the models. Since our aim is to match the joint dynamics of consumption growth
for the long sample, containing the Great Depression, and the calm post-war sample, we use annual
real per-capital log consumption growth of service and non-durable consumption expenditures from
the BEA.

To mimic the long sample, we simulate 10,000 daily consumption paths for 141 years, which is
the average sample length in Barro and Ursua (2012). We then time aggregate daily consumption to
annual frequency and define disasters as in Barro (2006). For the long sample, we aim to match an
average disaster size of 16.59% and an average disaster duration of 44 months, which are the respective
values for the U.S. Great Depression. Since the long U.S. sample contains only one disaster, we take
the likelihood of entering a disaster from Barro and Ursua (2012), which is close to the value in Wachter
(2013).

In the post-war sample, the worst consumption drop occurred during the corona pandemic in 2020,
when consumption growth fell by 5.11%. To mimic the post-war sample, we simulate 10,000 daily
consumption paths for 74 years and only retain the consumption path when the worst cumulative
annual consumption drop does not fall below 5.11%. For the post-war sample, we target the mean,
standard deviation, skewness, and kurtosis of consumption growth.

Given these simulated consumption paths, we minimize the sum of squared relative deviations
between model and data moments by choosing the consumption drift u., consumption volatility o,
the jump intensities for the low and high state A, and Ap, the transition rates between the two states
¢y and ¢, and the average jump size ¢.

Overall, the model matches all consumption moments very well. To fit the calm post-war sample,
consumption growth has a drift p. = 0.024, low volatility of 0. = 0.011, a low jump intensity A, = 0.17,
and an average duration of 8.2 years (¢ g = 0.12). These parameter values generate volatility of 1.5%,
left skewness of -1.1, and kurtosis of 5.0 in annual consumption growth, similar to the post-war sample.

In contrast, the long sample features disasters like the Great Depression. The high jump intensity
state requires 1.7 jumps per year on average (Ag = 1.7), a short duration of 2.6 years (¢x = 0.38), and
an average jump size of 1/e. = 0.025. Importantly, not every high jump risk episode leads to a disaster,
as defined by Barro (2006), because during the typical high jump risk episode, aggregate consumption
drops by only 4.8%. Overall, disasters are rare and the parameter values generate disasters like the

U.S. Great Depression with a likelihood of 3.6%.



In Figure 9, we compare the distribution of model-generated disasters with the distribution of
international disasters collected by Barro and Ursua (2012) in terms of cumulative consumption drop

and duration.
2.3 Learning Dynamics

Next, we describe the learning dynamics of the representative agent, her preferences, and the joint
implications of her learning dynamics and preferences together with consumption dynamics for the
stochastic discount factor. The representative agent can observe aggregate consumption, knows all
fixed parameters governing consumption dynamics, but does not observe the physical arrival intensity
of consumption jumps, i.e. A\; is unobservable.

The representative agent uses her observations of aggregate consumption to update her subjective
beliefs about the probability of being in the high-risk state. We define p, to be the agent’s posterior

belief that the current state is H i.e. \; = Ay
Pt = PT(At = /\Hl]:t)y

where F; is the information set available to the agent up to time ¢. Her time-¢ subjective jump intensity
for aggregate consumption is the belief-weighted arithmetic mean of jump intensities across states, i.e.
A = S\(pt) =pAg + (1 —p)Ap. If we assume that the representative agent is Bayesian, the dynamics

of her subjective beliefs are given by the following stochastic differential equation:

dpr = &(fu — pe_)dt + op(pi—) (AN; — X(pe_)dt), (2)

where k = ¢ g+ ¢y is the rate at which the Markov chain (which drives transitions in A\; between Ap,
and Ap) converges to its long-run mean (under P), fi = ¢ /k is the long-run physical probability
of the Markov chain being in the high-risk state, and o,(p), given by

CAm -

op(p) p)

p(l—p)>0
is a measure belief uncertainty.’

The representative agent cannot observe the disaster intensity, but she knows that A; switches
randomly between the values Ay and Ap. She learns about the current state of A\; by observing
realizations of Ny, i.e., jumps (or their absence) in consumption (see (1)).

Whenever there is a downward jump in consumption, i.e. dNy = 1, the agent’s belief the economy

5The long-run physical probability of the Markov chain being in the low-risk state is f, = 1 — fg = ¢H /K-
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is in the high-risk state jumps up by an amount equal to her belief uncertainty, i.e.
dp: = 0y(pr—) > 0. (3)

Hence, the upward revision in the agent’s belief is largest when belief uncertainty is maximized, i.e.
when pr— = VAL/(VAL + VAr)."

Between jumps, the agent’s belief that the economy is in the high-risk state either grows logistically
or decays exponentially towards a long-run belief p*, given in (B3). If the agent’s initial belief is above
its long-run value, i.e. py > p*, belief dynamics will consist of exponential decay towards p*, punctuated
by upward jumps whenever there is a downward jump in consumption, as summarized in Figure 2.
The size of the downward jump in consumption is unrelated to jump intensity and therefore has no
impact on the agent’s belief she is in the high-risk state. However, a slowly unfolding disaster, which
is a series of downward jumps, will lead to a series of upward jumps in the agent’s belief she is in the
high-risk state, with little time for exponential decay to work, creating a substantial increase in risk

perceptions.”
2.4 Preferences and the Stochastic Discount Factor

The representative agent has the continuous-time analog of Epstein-Zin-Weil preferences with an elas-
ticity of intertemporal substitution, 1, which equals 1. Thus, the representative agent’s value function
is given by

Jt = Et /;OOf(CsaJS) dS, (4)

where f is given by the normalized Kreps-Porteus aggregator:

fle,v) =1 —7)vIn (c/h_l(v)) , (5)

for

1—
., Y= 07 £,

Inx, v=1,

h(z) =

61t is also useful to define the jump in the belief as

A(p) P

T = MAL (g ) 7elD)

7We shall denote the probability measure representing the agent’s subjective beliefs via P, which we define as follows.
Let A be an event realized at time 7' > ¢ and let T4 be the indicator function associated with A. Now, F¢[-] denotes the
time-¢ conditional expectation operator under P and E¢[l4] is the time-{ conditional probability of event A, which we

define via E; [1a] = Et []1\\% IA] , where M is the following exponential martingale under P: ]‘\iZMt = (i\‘z—’ — 1) (dN¢ —
Y _

Ae—dt), My = 1.

11



where f3 is the rate of time preference and ~ is the coefficient of relative risk aversion.®

The representative agent’s value function is of the form
J(Cy,pe) = h(e¥ P Cy), (6)

where the function V' (p;) (see Figure 3) captures how learning about the (physical) intensity of jumps
in consumption impacts the agent’s utility.”

We now explain how learning dynamics amplify the welfare losses stemming from downward jumps
in consumption. When consumption jumps downwards, this leads to a direct downward jump in welfare
driven by C, as we can see from (6). However, the agent’s belief that the economy is in the high-risk
state also jumps upwards by an amount equal to the level of belief uncertainty, causing V(p;) to jump
downwards (Figure 3 shows V (p;) is monotonically decreasing in p;), creating an additional downward
jump in welfare.

We can see from (3) and (6) that size of the learning based amplification of downward jumps in
consumption depends on belief uncertainty, and is equivalent to an additional jump in log consumption,
given by a(p;_ ), where

a(pr-) =V (pi— +op(pe-)) = V(ps-) <0 (7)

and p;_ is the agent’s belief that she is in the high-risk state just before the consumption jump and
Pi— + op(pi—) is her updated belief just after. For example, from Figure 4, we can see that when the
agent believes the economy is in the high-risk state with probability 0.2, the additional impact of a
downward jump on welfare via the learning channel is equivalent to a downward jump in consumption
of approximately 5%. Naturally, learning-based amplification attenuates as the agent becomes more
certain of the economy’s state because she perceives she has less to learn.

The agent’s preference for early resolution of intertemporal consumption risk means that the
learning-based amplification of utility losses from downward consumption jumps impacts both the
price of consumption across time via the demand for precautionary savings and the price of consump-
tion across states, which is encoded by the stochastic discount factor, .

Beliefs are risky and because the agent has a prefers to resolve intertemporal risk more speedily,
belief uncertainty is priced in addition to jump-risk. This is powerful, because learning amplifies the

already substantial jump-risk price.

8The continuous-time version of the recursive preferences introduced by Epstein and Zin (1989) and Weil (1990) is
known as stochastic differential utility (SDU), and is derived in Duffie and Epstein (1992). Schroder and Skiadas (1999)
provide a proof of existence and uniqueness. Kraft and Seifried (2010) show the version of SDU we use is well defined
under a mixed Brownian-Poisson filtration.

9Proposition B1 in Appendix B shows that V' (p) satisfies a functional differential equation with a boundary condition
at p = p*.
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The learning-driven amplification of welfare losses from downward consumption jumps will increase
the value of a consumption unit in a state where consumption jumps downward relative to a state
where there is no jump. To see this more explicitly, we consider the representative agent’s equilibrium

stochastic discount factor (SDF), denoted by .

Proposition 1 The dynamics of the equilibrium stochastic discount factor w; are given by

@ = —’I“(pt,)dt — @BdBcﬂj + [eJ(Zc7t) + @a(ptfazc,t)}dNt - ()\Q(Pt—) - S\(pt,))dt, (8)

T —

where the locally risk-free rate is given by

< J,
_ 2 Q ¢
= . — Y
r(pe) = B+ pe — oo (pe) 7= T
and the price of Brownian risks in log consumption is given by
@B = YOc. (9)

©(Z.4) is the price of static jump risk, given by
©5(Zey) = Vet — 1 m Vet
and O4(p;—, Zey) is the dynamic learning risk price
Ou(Pr—s Zet) = ©5(Ze) eV — 1] m —(y = )a(pi-)0.1(Ze.1) (10)

The risk-neutral intensity rate for jump arrivals \¢(p;_) is related to the corresponding subjective
intensity \(p,_) via
Ae(p) = W(Pt—)j\(Pt—)y (11)
where w(pi—) is a risk distortion factor, given by

1—-J. n 1—-J.
Jc(l +7) 1- Jc(l +7)

w(pe-) = 1= e~ (r=Dalpi-) _ 1} . (12)

Without downward jumps in consumption, the risk-free rate is given by the standard expression
B + e — yo2. The only aggregate consumption risk is then standard Brownian risk, which carries
the price ©p given by the standard expression (9) — we know from Mehra and Prescott (1985) that
the risk price ©®p can only create an empirically realistic equity premium magnitude if relative risk
aversion < is very large, because consumption growth volatility o, is relatively low — 1.13% per annum
in our calibration.

The risk of a downward jump in consumption creates additional demand for precautionary savings,

which depresses the risk-free rate by the amount S\Q(pt)l_‘]—jc,y (provided J. < 1/v). This additional
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demand for precautionary savings has two components: the desire to save in the face of static disaster

risk, which contributes #dfw) to the risk distortion factor and a desire to save in the face of learning

induced dynamic risk, which contributes #({jrv) [e=(O=Dalpe-) — 1] to the risk distortion factor, as
shown in (12). We can see from Figure 6 that as the agent’s belief she is in the high-risk state rises,
so does her demand for safe assets, driving up the risk-free bond price and depressing the equilibrium
risk-free rate.

The upwards jump in the SDF, which occurs when there is a downward jump in consumption, is the
price of jump risk and has two components. The first component is given by © ;(Z. +), would be present
in a static disaster risk model, is independent of the agent’s beliefs, and is driven by the size of the log
consumption jump Z., together with the agent’s relative risk aversion . This component drives the
equity premium in Rietz (1988) and Barro (2006). The second component, given by O (pi—, Zc 1), is
present because learning impacts the agent’s utility. As we can see from (10), O, (pt—, Z¢,+) depends on

the size of the learning-based amplification in utility losses from the downward jump, a(p;—) < 0, and

the extent to which the agent prefers the earlier resolution of intertemporal risk, v —1/¢p =v—1> 0:

static disaster risk dynamic learning risk
(power utility) (EZW preferences, v > 1)
—_—~—
Tt 1= e'YZc,t -1 4 e’YZc,t[e—(’Y—l)a(Pt—) _ 1} )
Te—
=0(Ze,0)>0 =04 (pt—Zc,t)>0

The learning-induced component of the jump-risk price is also time-varying, so in addition to increasing
the equity premium’s magnitude, it introduces endogenous time variation, as in Wachter and Zhu
(2019).

The risk distortion factor w(p;—) (see Figure 5) summarizes how jump risk is priced into the
subjective consumption jump arrival intensity, and creates a wedge between risk-neutral and subjective
consumption jump arrival intensities. We can decompose the risk distortion factor into two parts. The

first part is the physical mean of the static disaster risk jump in the SDF, i.c., E;_[eY?et|dN; = 1] =

1-J,

=7, and the second part is driven by dynamic learning risk, i.e., e~(7=Da@+-)  Therefore, the

risk-distortion factor is a function of beliefs and is increasing with belief uncertainty, inheriting its

shape, as shown in Figure 5. The risk-neutral jump arrival intensity is A%(p;) at time-t, given by (11).

3 Firms’ Dynamics and CDX Prices

In this section, we embed a firm-level structural model of optimal default and capital structure inside
the consumption-based model described in Section 2. We use our model to price firm-level defaultable

debt and hence construct a price for CDX, an index of credit default swaps on investment-grade firms.
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Our approach differs from Seo and Wachter (2018), Doshi, Ericsson, Fournier, and Seo (2021), and
Collin-Dufresne, Junge, and Trolle (2022). In our model CDX prices depend directly on corporate bond
prices derived from a structural model where firm-level earnings are exogenous, there is a stochastic
discount factor from a consumption-based model, and default and capital structure decisions are made
optimally, as in Bhamra, Kuehn, and Strebulaev (2010b) and Chen (2010). In contrast, Seo and
Wachter (2018) CDX prices depend on an asset value process, as in Black and Cox (1976), where default
occurs when asset values fall below an exogenous and constant barrier. In Collin-Dufresne, Junge,
and Trolle (2022), firm values dynamics are specified exogenously under the risk-neutral probability

measure, and while the firm-value default boundary is time-varying, it remains exogenous.
3.1 CDX Pricing

In this section, we explain how the price of a CDX depend on the prices of the underlying corporate
bonds and firm-level default decisions. In subsequent sections, we explain the framework we use to
derive corporate bond prices and endogenous default decisions.

We shall price Markit’s North American Investment Grade CDX Index (the CDX.NA.IG Index
commonly known as the “IG Index”), which is composed of 125 of the most liquid North American
firms with investment grade credit ratings that trade in the CDS market. The index composition is
chosen twice annually at times known as roll dates, which we denote by t,o11.'0 At each roll date, the
CDX index is issued with six maturities: 1 year, 2 years, 3 years, 5 years, 7 years, and 10 years.

We now describe how the CDX index value is related to the corporate bond prices of the firms in
the index. Let the set of firms in the index defined at the roll date ¢, be N7 (t.on) and the number
of firms in the index be Ng(ton)-

Let the time-t nominal price of the corporate debt issued by firm k& be Di)t. The random default

time of firm £’s debt is denoted by 7p ; and so we can define the nominal stochastic recovery rate

3
R$ . Dkv"'D,k
D,k $ ’
Dkytissue

which is the ratio of corporate debt value for firm k at default relative to the value at time of issuance,
tissue We use 1y g(ton) to represent the fraction of firms in the index defined at the roll date t,oy, that
have defaulted between the times t and s > t:

1
ng s(trol]) = ———— leg o1
t, ( 11) NF(troll) kENFZ(t N {t<7p,x<s}

10The two roll dates for a given year are September 20 (or the Business Day immediately thereafter in the event that
September 20 is not a Business Day) and March 20 (or the Business Day immediately thereafter in the event that March
20 is not a Business Day).
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The key state variables which impact the value of the CDX index are {REDYk}keNp(tmu) and the
stochastic process n¢ s(tron)-

The Ng(tyon) firms in the index are selected according to a pre-defined and publicly known set of
rules (e.g. credit quality). A CDX contract issued at the roll date ¢, has a finite time to maturity,
denoted by T" — t, where t is the current time (¢ € [tyon,1")) and T' € {tron + 1, tron + 2, tron + 3, tron +
5, tron + 7, tron + 10}.

A CDX contract is a swap between a protection buyer and a protection seller. The protection
buyer receives cashflows from the protection seller which are decreasing in the value of the corporate
bonds in the index. The protection seller receives cashflows from the protection buyer which are fixed
in nominal terms and are payments for the insurance the protection seller provides to the protection
buyer.

We first describe the cashflows received by the protection buyer. If firm & in the index defaults
at time 7p x, the protection buyer receives a cashflow of $1 - w—A— - (1 — R, ), where R® s

NF(troll) ' D,k

the recovery rate for firm k’s debt. We can see that if the recovery rate is zero, then the cashflow is

$1- m Therefore, the sum of the nominal payoffs received by the protection buyer up until time
s>tis
1
Lis(troll) =$§1- Nobon) Z Litcrp p<s} (1 - RfD,k) :
"% kENF (tron)

which is increasing in the losses an investor in the bonds within the index would have made and is

known as the cumulative loss. The nominal present value of the cumulative loss is given by

1 -
Prot® (I —t)=$1-—- Y E,
Nr keENF

T ﬂ-$ ;
TD,k
/t $ ( - RTD,]C)]‘{t<TD1kSS}dS )

ur
where, for ease of notation, we have suppressed the dependence on the roll date. Using increments in

L, we can write the nominal present value of protection payoffs compactly as

T _$
s
$
/ —; st,s] .
t Ty

We now describe the cashflows received by the protection seller. The protection seller receives

Prot® (' —t) = E,

insurance payments which amount to $1- (Scpx - 1) - (1 — ny ) every quarter.'’ In addition, as pay-
ments are made in arrears, the protection seller receives an accrued premium as compensation for the
time the defaulted entity was covered since the last scheduled payment. Suppose, for example, firm k
defaults between dates t + ;11 and ¢, then firm k was covered for an additional timespan of (7p j — t)
since the last quarterly payment: the accrued premium amounts to $1-(Scpx - %) “A(Tpg—1t)-dngrp s

where dny ,p, , = NLF as we assumed a singular default. Aggregating both the expected discounted

11 It is market convention to quote quarterly paid spreads in annual terms, hence Scpx - %,
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scheduled and default triggered payments gives the following expression for the nominal present value

of cashflows received by the protection seller

4T

t+1m -
Z/ —ds (1—ntt+;m)
m A

m=1"1

/ o 1)/ —“du4< t—i(m—l))dnm].

Finally, Scpx is set such that present values of protection and premium payments are equal when

1 -
Prem (7' — ¢, Scpx) =$1- Sepx - 1 E;

the contract commences at time t,.;;, and so

Prot (T — tml])
Prem (T' — tyon, $1)°

Scpx =

The time-t value of a CDX contract on a notional value of $1 from the perspective of the protection

buyer is given by

Prot® (' — t) — Scpx - Prem (T — t,$1)

T $
/ Ts —=dLj
t 7Tt

t+4m $ t+ m 1
Z/ st nt7t+im) /+ " 1)/ —ud 4( t—Z(m—1)> d?’lms .

We now describe the model of optimal default and corporate financing, which we embed inside the

:Et

— Scpx -

consumption-based model of Sections 2-2.3.

3.2 Firms’ Earnings Dynamics

There are K firms in the economy. The real carnings process for firm &k € {1,..., K} is given by Xy,

with
dXk

¥ = pedt + %48, ¢ + 0B, 4 (e7 %t — 1)dN; — dNy s,
kt—

where p,, is the expected earnings growth rate, B, ; and B, j are standard Brownian motions under P,
where dB, ; represents the systematic shock the earnings of firm k while dB, j ; represents an idiosyn-
cratic shock the earnings of firm k. We assume that E;[dB.(dBy] = pesdt and Ey[dB.dBy 1] =
E\[dBy j.4dBy i ¢] = 0 for k' # k. Therefore, oid is the idiosyncratic volatility from Brownian shocks,
oY% is the systematic volatility from Brownian shocks, and p., is the correlation between the Brownian

shock to consumption and systematic Brownian shock to earnings.
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Firm k’s earnings are subject to aggregate jump risk via the same Poisson shock, dN;, which
impacts aggregate consumption. However, the impact of this aggregate shock is heterogeneous across
firms. The size of the jump in the logarithm of firm k’s earnings, is given by Z ;, where Zj ; is an
exponentially distributed random variable independent across firms and also independent of Z.; with
common mean 1/e, = ¢/e. > 0.12

Distance-to-default will be endogenously heterogeneous across firms because of heterogeneity in
jump sizes and idiosyncratic Brownian shocks. Hence, a downward jump in consumption will lead
some firms to default and change the cross-sectional distribution of distance-to-default for firms that
do not default.

In addition, we assume that an individual firm can exogenously exit the economy when the id-
iosyncratic Poisson shock d Ny, + equals 1 (which drives earnings to zero), which occurs with exogenous
intensity A\, under P.'® This type of shock can be interpreted economically as a particular firm’s earn-
ings technology becoming unprofitable due to, e.g. a firm-specific event such as prohibitive regulation,
obsolete products, or the departure of key employees.

Observing the panel of firms’ earnings does not reveal more information about the consumption
jump arrival intensity because each firm’s earnings is hit by the same jump shock as consumption.

Therefore, the learning dynamics described in Section 2.3 still apply.
3.3 Learning, Optimal Default, Capital Structure, and Asset Prices

We now characterize the two-way feedback between prices of a firm’s levered equity and its defaultable
corporate debt and optimal default and capital structure decisions. The novelty of our model lies in
its ability to shed light on how slowly unfolding disasters and beliefs about their arrival rate influence
this feedback.

We follow the standard earnings-based approach of modelling corporate debt and optimal capital
structure decisions as seen in e.g. Goldstein, Ju, and Leland (2001), Hackbarth, Miao, and Morellec
(2006), Bhamra, Kuehn, and Strebulaev (2010b), Bhamra, Kuehn, and Strebulaev (2010a), and Chen
(2010). We assume initial firm owners of an all-equity firm issue a claim that entitles its owner to
demand a constant flow of payments with coupon rate ¢ for as long as the firm is solvent. Subtracting

these interest payments from the aggregate earnings Xj ; yields the payoff to the owners of levered

12We note that, conditional on a jump occuring the mean jump in a firm’ s earnings growth is given by

Ei_le %kt —1|dNy = 1] = Ey_[e" %kt —1|dN; = 1] = — <0,

1+ ex

lJrlem . Furthermore, in general wtih ¢(-,-) : R? — R, Ei_[q(Zet, Zot)|dNy = 1] =
Ei_[¢(Ze,t, Zz,t)|dNy = 1], because we condition on the jump occurring.
13This is a technical assumption to guarantee the existence of a stationary firm distribution and equivalent to exogenous

death in the Blanchard (1985) and Yaari (1965) model of perpetual youth.

and so we define J, =
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equity which is additionally taxed at the rate 7.

Equity holders enjoy limited liability. They can choose to stop paying ¢ in return for surrendering
the residual claim to after-tax earnings to the debtholders. They do so strategically by choosing a
default strategy that maximizes the value of their claim, trading off tax savings and bankruptcy costs.
This behaviour is anticipated by the initial firm owner and taken into account when deciding on the
optimal amount of debt to be issued at the firm’s inception. As in Gomes and Schmid (2012), firm-level
capital structure is static and so to ensure leverage is stationary in the long run, we have exogenous
exit as described in Section . When a firm exits, it is replaced by a firm with earnings set to the value
Xo— with capital structure chosen optimally.

First, we find the prices of levered equity and debt for an exogenously specified coupon rate. Second,

we describe an approach to determine the optimal capital structure.
3.3.1 Levered Equity and Optimal Default

We now price the levered equity claim owned by a firm’s equityholders. We assume the initial firm
owners have decided on capital structure by optimally fixing the coupon level ¢, so we can focus on
pricing the levered equity claim for a fixed coupon rate.

The key decision equityholders make is when to default. We denote the default time by 7p and
equity holders receive the firm’s earnings less coupon payments and taxes up until default. Therefore,
the time-t price of a firm’s levered equity is given by the expected present value of future cashflows
less coupon payments up until default, as shown below.

- ™
Sy =(1—mn) sup E: {/ — (X, — c)du
D>t t Tt
The time-t levered equity price will be a function of both current earnings and the current belief that
the economy is in a high risk-state, and so S; = S(X¢, p;).**

If the earnings flow falls temporarily below the coupon rate, ¢, but the value of levered equity is still
positive, equityholders subsidize firm earnings with their own personal wealth so they can still make
coupon payments to bondholders and retain ownership of the firm. As soon as the value of levered
equity reaches or jumps sharply below zero it will be optimal to declare default, i.e. to give up the
claim to the underlying payoff stream and collect a terminal payoff of zero in return.

The optimal stopping problem faced by equityholders leads to the characterization of the default

4 Proposition B5 shows that S(p, X) satisfies a ITamilton-Jacobi-Bellman Variational Inequality (ITJB-VI), allowing us
to solve jointly for the the levered equity price and the optimal default boundary. The optimality conditions commonly
associated with optimal stopping problems in economics, such as value matching and smooth-pasting (high contact)
hold when using the HIB-VI approach, see e.g. @ksendal (2003). Furthermore, Kyprianou and Surya (2007) and Chen
and Kou (2009) discuss the validity of using the smooth-pasting principle as an optimality condition when earnings are
modeled by various classes of jump processes.
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time 7p as first passage time of the form
D :1nf{1‘ >0: Xt < XD(Pt)}

The economic impact of learning on the optimal default decision is starkly default from the impact
in risk premia. The optimal default threshold rises monotonically as the agent’s belief she is in the
high-risk state increases (see Figure 8). A lack of noticable curvature implies belief uncertainty does
not appreciably impact the optimal default policy in contrast with risk premia.

Default can thus occur in two distinct ways. One, a series of Brownian shocks drags earnings down
to touch the default boundary, Two, a downward consumption jump is concurrent with a downward
earnings jump while the default boundary jumps upwards as the belief the economy in the high risk-
state jumps up. Therefore, learning combined with optimal default amplifies the effects of small
downward shifts in consumption on distance-to-default and hence levered equity risk and credit risk.
The impact on levered equity is greater than for corporate bonds, and so leverage surges as a series of
small jumps in consumption appear.

To understand the conditional levered equity risk premium for a firm, we first consider how a jump in

firm-level earnings impacts the levered equity price. We do so by evaluating the expected levered equity

By [S(Xy_e Bt py )|dN,=1]—S(Xs_,ps_ ) < 0.

return when there is a jump in X without any learning, i.e. (X pi)

We therefore define

Et,[S(Xe_Zk’f,pﬂdNt =1]-5X,p)

7X(X7p):_ S(X p)

> 0.

Secondly, we consider the impact of learning on the expected levered equity return, but without the

[S(Xi—e Zkt py [14Jp(pe))|dNy=1]—E;_[S(X¢_e Zkit py_)|dNp= 1]}
Ei [S(X¢_e 7Bt p, )|dNy=1]

impact of the jump in earnings, i.e. 2

0. We therefore define

E, [S(Xe Zxt p[l 4 J,(p))|dN; = 1] — E;_[S(X ek, p)|dN; = 1]
EN't_[S(XB_Z’“’t,p”dNt = 1]

7pX(X,p):— >0

Using the above definitions, we can decompose the conditional levered equity risk premium for a firm

as shown in the following proposition.

Proposition 2 The conditional levered equity risk premium for a firm is given by

- dRx ¢ Xt_ a8, _
ERP = E,_ L —r(p-) =0 co Cx (Xe-, Cp (X pe), (14
! A { 7 } r(pe_) BOp 5 6Xt_+ x(Xi—ypi-) + @r(Xe— pi—), (14)
where the premium for Brownian risks in cashflows is given by © po¥°p., )S(Z_ gf;i‘ =70:0Y°pex )éf_ giii

the premium for jump-risk in cashflows is given by

Dx(X,p) = (w(p) — DAp)Tx(X,p) >0
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and the premium for learning risk is given by

©1(X,p) = (W(p) — DAD)Tpy (X, p)[L — Tx (X, p)] > 0.
3.3.2 Corporate Bond Prices

We now characterize the price of firm-level corporate debt. The time-t price of perpetual corporate
debt issued with coupon rate c is given by
n T Ty - Ty
Dy = cE, ﬂ_—du +a(l —n)E; ﬂ__pX(prD)XTDI{rpng} .
t t t

5

Debtholders receive a coupon flow ¢ up until endogenous default at the random time 7p.'° If en-
dogenous default occurs prior to exogenous exit, then debtholders receive the fraction a of after-tax
unlevered firm value. At default, the firm becomes an all equity firm, so firm value is merely the value
of unlevered equity, given by px(pr,)X;,. The time-t value of perpetual debt depends on current

earnings and current beliefs, i.e. Dy = D(Xy,p;). The yield on such debt, denoted by y(Xy,p:) is

defined by
c

y(Xe,pe) = DX pr)

3.3.3 Optimal Capital Structure

Up to this point, we have discussed how to determine the prices of levered equity, debt and the optimal
default boundary for an exogenously specified coupon c¢. Next we turn to determining the optimal level
of debt to be issued at the point of firm inception. We take the perspective of the intial owners of the
all equity firm.'©

Unlike equity owners, initial firms owners care about both S(X;, p;) and D(Xy, p;) when determin-
ing their optimal strategy. One can think of them receiving a one-off lump sum payment on the day
their firm is founded in return for the debt sold. We additionally assume that the issuance of debt
is costly and a fraction of ¢ deducted from the payment they receive. Thus, the inital firm owners’
optimization target becomes Fy_ = So_ + (1 — ¢)Dy_ and the optimal capital structure problem can

be written as

15Exogenous exit at the random time T7x ( Tx is exponentially distributed with parameter Ax) automatically induces
default because earnings must cross the default boundary when earnings jumps to zero.

161t is common in literature to tackle the inital firm owners’ problem in two distinct steps, see e.g. Leland (1994),
Leland and Toft (1996), Goldstein, Ju, and Leland (2001). Once the prices of equity and debt have been found for a
given c, one first determines the optimal default response Xp . of equity owners maximizing the value of their claim to
firm earnings St. Subsequently, one chooses ¢ such that the inital firm owners’ wealth is maximized while internalizing
the future equity owners’ best response Contrary to this, Proposition B5 only takes the coupon level ¢ as given and
delivers the optimal default boundary, X p(p), as part of the solution to the levered equity problem formulated in Section
3.3.1. As a result, the second step is all that remains.
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(¢po_,0—) = argmax Fo_ (cpo__yo_,XD’ch_’o_ (po_)) ,

where the double index po— o— underlines the dependence of optimal corporate financial decisions ¢ and
Xp(pt) on the initial state, characterized by an economy wide belief pg— and a firm specific earnings

level X(_, in which the firm is launched.'”
4 Empirics

In this section, we describe data sources and explain how we obtain parameter values for the quanti-
tative evaluation of the model. The continuous-time model is simulated at a daily frequency and time
aggregated to a monthly frequency. Firm-level parameters are estimated with the simulated method of
moments based on data from 2003 to 2022. Because the model must be solved numerically, estimating
all model parameters is computationally infeasible. We, therefore, focus the estimation on those pa-
rameters for which the existing literature provides only weak priors — the parameters associated with
firms’ cash flow risk and bankruptcy costs. The other parameters are based on values in the prior

literature.

4.1 Firm Level Data

For the structural estimation, we require data on equity returns, leverage, and CDX prices. Monthly
return and leverage data are from CRSP-Compustat. We define the quarterly book value of debt as
the sum of short and long-term liabilities (DLCQ plus DLTTQ). Monthly leverage is defined as the
most recent quarterly book value of debt divided by the sum of the book value of debt and the market
value of equity.

Daily data on credit default swaps (CDS) for the period from September 2003 to June 2022 are
obtained from ICE Data Services (formerly known as Credit Market Analysis Ltd. (CMA)). The
dataset contains information on pricing (bid and ask quotes) and contract terms of the underlying
debt and credit default swaps (e.g., currency, debt seniority, credit event of restructuring, and tenor
of the CDS contract).

In this paper, we focus on Markit’s North American Investment Grade CDX Index, described in
Section 3.1. It is composed of 125 of the most liquid North American firms with investment-grade

credit ratings that trade in the CDS market. The index composition is chosen twice annually at

17While initial economic conditions have a direct impact on leverage decisions through their impact on e.g. the
perceived likelihood of default in the immediate future, the dependence of Xp(p¢) on the coupon level ¢ means they
indirectly impact the future equity holders optimal default strategy as well.
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times known as roll dates. We match the sample of firms contained in the on-the-run contract with
CRSP-Compustat name by name.

For the structural estimation, we target the pooled average and standard deviation of monthly
excess returns and leverage for these matched firms. In addition, we target the mean and standard
of the 5-year CDX rate as well as the standard deviation of the equal-weighted portfolio return of

matched firms.

4.2 Predefined Parameters

Table 3 summarizes predefined parameters. As in Wachter (2013), we assume that the agent has unit
elasticity of substitution, which simplifies the discount factor. Wachter (2013) models large infrequent
jumps using the distribution of consumption declines found by Barro and Ursua (2008). Since these
large infrequent jumps increase the curvature of the stochastic discount factor, she can assume a risk of
aversion of 3 for the agent to generate a realistic equity premium. In contrast, we model smaller, more
frequent jumps, which generate a realistic distribution of consumption growth, as shown in Section
2.2. To compensate for the smaller curvature in the stochastic discount factor induced by smaller,
more frequent jumps, we assume that the representative agent has a risk aversion of 10, as in Bansal
and Yaron (2004). We choose the time discount rate 8 such that the perpetual risk-free yield equals
1%. The correlation between consumption and earning growth is set at 20%, as estimated by Bhamra,
Kuehn, and Strebulaev (2010b).

We set the earnings drift u, such that the observed net earnings growth rate equals the net con-

sumption growth rate

po = e — (fuAE + frAL)Je + (fuXe + frAL) Js.

In the model, firms issue debt only on the initial date when they are formed. As a result, the im-
portance of leverage vanishes over time as firms outgrow their optimal leverage. To counterbalance
these dynamics, firms also face exogenous exit. We set the exogenous exit rate such that the true net

earnings growth rate equals zero, which implies that
)\z = Hec — (fH)\H + fLAL)Jc-

As a result, in panel simulations of the model, average leverage is stationary over time.
We set the debt issuance costs at ¢ = 1%, based on the empirical evidence in Altinkilic and Hansen

(2000) for large firms. Graham (2013) shows in equation (5) that the value of a firm with perpetual
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debt can be written as

(1 —7.)(1—

Te
Fwithdebt:Fnodebt+ 1— ) Dv
(1—7p)

where 7. denotes the corporate tax rate, 7. the equity payout tax rate, and 7, the personal tax rate.
The term in the square brackets captures the tax advantage of debt. Based on estimates from Kuehn,
Schreindorfer, and Schulz (2023), who find that 7. = 0.329, 7. = 0.112, and 7, = 0.296, we set
n=1-Uedlore) — g5,

(1_7'17)
4.3 Estimation

The remaining four model parameters, the amount of idiosyncratic Gaussian risk old, systematic
Gaussian risk ¢37®, bankruptcy costs 1 — a, and the jump scaling parameter ¢, are estimated with
the simulated method of moments (SMM) using 7 moments, which are the average of firm-level excess
returns, leverage, and 5-year CDX rate, and the standard deviation of firm-level and market excess
returns, leverage, and 5-year CDX rate.

id
T

Given the predefined parameters summarized in Table 3, and vector § = (¢4, 055 a, ) T € R*, we
solve the model numerically and simulate panels of firms. The SMM objective function is a weighted
metric between seven model moments from simulated panels ¥ (§) € R” and the corresponding seven
moments from actual data TP € R7, defined by the quadratic form [QD —yM (Q)}TW[QD —yM (0)],
where W € R7*7 is the seven by seven weighing matrix. Following Bloom, Floetotto, Jaimovich,
Saporta-Eksten, and Terry (2018), we set the diagonal elements of W to be (1/¥)2 and the off-
diagonal elements to zero. Intuitively, with this weighting matrix the SMM estimator minimizes the
sum of squared percentage deviations of model moments from the corresponding data moments.

The parameter estimate 0 is found by searching globally over the parameter space, which we
implement via a particle swarm algorithm. Because the numerical model solution is computationally
expensive, the estimation requires a high performance computing environment. Computing standard
errors for the parameter estimate requires the Jacobian of the moment vector, which we find numerically
via a finite difference method.

A noteworthy feature of our 2003 to 2022 sample period is that it contains the Great Recession and
the Covid-19 recession. While annual consumption dropped by only 1.6% during the Great Recession,
it dropped by 5.1% in 2020. Since this value is small relative to the consumption drop in a typical
disaster, it is therefore not appropriate to estimate the model based on the ergodic distribution.

Instead, we base the estimation on simulated data that mimics the amount of macroeconomic risk in

our sample. Specifically, we simulate 1,000 daily panels of 125 firms over 29 years, where the first
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10 years act as burn-in. We then time aggregate daily consumption to annual frequency and ensure
that the worst annual consumption drop in each panel does not fall below —5.1%, as in the data. As
a result, the (unconditional) consumption growth distribution matches the moments of the post-war
sample, as reported in Table 2.

Before explaining the estimation results, we discuss the identification strategy. In Table 4, we report
the sensitivity of model-implied moments (in rows) with respect to model parameters (in columns).

M 5.
The sensitivity of moment ¢ with respect to parameter j equals 8;'9; ;{W and is evaluated at the vector

of point estimates from Table 5.

Idiosyncratic risk has a large positive impact on the 5-year CDX rate level and dispersion as well as
the standard deviation of firm-level returns. The impact of aggregate Brownian risk on the moments
is small but it helps to identify the amount of aggregate market risk. Jump risk in earnings are well
identified because they impact the level and dispersion of the CDX rate. As jump risk increases,
more firms end up in default, leading to a higher cost of credit risk insurance. Bankruptcy costs have
a significant negative impact on leverage, as firms optimally delever when they face higher costs of
financial distress.

Tables 5 and 6 summarize the estimation. Overall, the model fits the data very well. The model
generates an annualized average risk premium of 9.5%, relative to 10.8% in the data. While monthly
firm-level returns are very volatile at 9.8% relative to 9.2% in the data, market excess returns are
significantly less dispersed at 4.2% relative to 5.1% in the data. The model generates these moments
by setting 18.1% idiosyncratic risk and 5.2% aggregate risk.

The model also generates the right amount of leverage of 27.4% relative to 28.9% in the data,
and leverage dispersion of 15.3% relative to 15.9% in the data. Given tax shields, the key parameter
to identify leverage is the bankruptcy costs. Our estimation implies 34.3% bankruptcy losses. As
shown in Chen (2010), time-varying bankruptcy costs alleviate the so-called low leverage puzzle: the
typical investment grade firm appears to be under-levered, given the large tax shields and small default
probability. With time-varying bankruptcy costs, firms are reluctant to take on leverage not because
the deadweight losses of default are high on average, but because the losses are particularly high in
those states in which defaults are more likely and losses are more painful. Even though the jump
intensity is driven by a Markov switching process in our framework, we cannot tie bankruptcy costs
to the Markov state because it is not observable to agents.

Lastly, the model generates a realistic CDX rate for investment grade firms of 72 basis points,
relative to 77 basis points in the data. CDX rates are also volatile at 38 basis points relative to 34

basis points in the data. The jump scaling parameter ¢ is crucial to match credit market moments. Our
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estimation implies that earnings jumps are 3.3 times higher than consumption jumps. This estimate is
in line with data for the Great Depression, where earnings losses was 3.8 times higher than consumption
losses.

Statistically, the model is rejected at the 5% level as the p-value of the J-statistics is 2.9%, even
though the economic fit is excellent. Interestingly, the point estimate for systematic Brownian shocks
is not statistically significant. Our model features two sources of aggregate risk: systematic Brownian
shocks, which are correlated with consumption, and Poisson jumps. While earnings losses are larger
than consumption losses during disasters, firm-level earnings and consumption jump simultaneously,
thereby generating aggregate risk. Empirically, we find that common jump risk is more important for
the pricing of credit instruments than common Brownian shocks.

The composition of risk between idiosyncratic and aggregate has a significant impact on credit risk,
as shown by Chen, Collin-Dufresne, and Goldstein (2009). Intuitively, if most risks were aggregate,
many firms would default at the same time, driving up credit risk. Yet, in the data, the firm-level
Sharpe ratio is much smaller than the aggregate Sharpe ratio because individual firms are more volatile

than the market. Importantly, our framework can match this fact.

4.4 Term Structure of CDX

In this section, we explore the pricing of the entire term structure of CDX contracts ranging from 1 to
10 years. One can view this exercise as an out-of-sample validation of our model mechanism because
we fit the model only to the first and second moments of the 5-year CDX contract, which tends to be
the most liquid one.

Figure 10 depicts the term structure of CDX rates in the left panel and the term structure of physical
and risk-neutral default probabilities in the right panel. CDX spreads are annual and reported in basis
points per unit of notional for contracts with a fixed time to maturity from 1 to 10 years. Model
parameters are set to the values reported in Table 1. Empirical averages are computed from daily data
on Markits North American Investment Grade CDX Index obtained from ICE Data Services for the
period from September 2003 to June 2022. Default probabilities are reported in percent for horizons
ranging from 1 to 10 years. Empirical default probabilities are the average cumulative issuer-weighted
global default rates reported by Moodys spanning the period from 1920 to 2017 for entities categorized
as investment grade (letter rating of Baa3 or better). In Table 7, we report corresponding numerical
values.

Even though we only target the first and second moments of the 5-year CDX contract, our model

18 According to Shiller’s stock market data, aggregate real earnings dropped by 62.4% relative to 16.6% for consumption.
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does well in matching the entire term structure of CDX rates. In particular, the model generates
realistic short-term CDX rates, an average 1-year (3-year) CDX rate of 21 (46) basis points relative to
22 (51) basis points in the data, as well as long-term rates, an average 8-year (10-year) CDX rate of 113
(138) basis points relative to 105 (113) basis points in the data. In contrast, other consumption-based
models, such as Bhamra, Kuehn, and Strebulaev (2010b), Chen (2010), and Kuehn, Schreindorfer, and
Schulz (2023), can only explain a single point of the term structure.

A resolution to the credit spread puzzle requires a model to match three facts: low leverage, large
credit spreads, and low physical default probabilities. Intuitively, market participants are asking for
significant compensation for holding credit instruments, although corporate defaults are rare. As
shown above, our framework generates realistic leverage and large credit spreads. Figure 10 and Table
7 report the term structure of physical default probabilities, which were not targets of the structural
estimation. Overall, our model matches the data very well. At the short end of the term structure, the
model implies 1-year (3-year) average physical default probabilities of 0.18% (0.71%) relative to 0.14%
(0.72%) in the data, and at the long end 10-year (8-year) 3.71% (2.67%) relative to 3.56% (2.70%) in
the data.

Even though physical default probabilities are small, risk-neutral ones are significantly larger,
driving up credit spreads. At the short end, risk-neutral default probabilities are 0.31%, which is 1.7
times greater than the corresponding physical one, and at the long end, risk-neutral default probabilities
are 17.1%, which is 4.6 times greater than the corresponding physical one. Intuitively, over a 1-year
horizon, it is not very likely that the economy enters the high jump risk state, but this risk is rising

over longer horizons. As a result, the credit risk compensation is increasing in the term structure.

4.5 Equity Premium

Figure 11 displays the conditional equity risk premium (ERP) of an unlevered firm (left panel) and
a levered firm (right panel) for the learning model and full information model, where the agent can
observe the state. The dashed red line represents p*, which is the lower bound for p;.

For example, for p;,_ = 0.36, the unlevered ERP is about 10%, of which about 4% is due to the
learning risk premium, 5.4% is due to the jump risk premium, and the remaining 0.6% is due to
Brownian risk. In the case of the unlevered firm, the conditional ERP is only a function of p;—. In
contrast to that, time variation in the levered equity premium is caused by both changes in p;— and
a firm’s earnings levels X;. In addition, it is also a function of the outstanding coupon chosen at the

point of debt issuance. To facilitate a meaningful comparison, we assume that debt was issued when
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earnings were X; = 1, and the belief about the state was p, = p*, and we also assume current earnings
to be X; = 1. This choice of parameters, while holding the earnings level constant, corresponds to
leverage levels ranging from approximately 28% to 35%, depending on the agent’s estimate of the
current state, thereby keeping it in range of the time series mean reported in Table 6.

In both cases, the ERP is increasing in uncertainty about the state peaking at about p,_ = 0.36.
While the jump risk premium contributes the most at all levels of p;_, the learning risk premium con-
tributes a considerable amount when uncertainty is high, but vanishes as the agent’s belief approaches
certainty. In absolute terms, the contribution of the Brownian risk premium is constant for the unlev-
ered ERP and varies little in case of the levered ERP. Comparing both panels we can gauge the role of
leverage. At an earnings level of 1, the levered ERP is approximately 1.45 times higher independent of
the belief held. Moreover, the introduction of leverage does not significantly alter the relative contri-
butions of the different components of the ERP. On the other hand, as leverage approaches zero in the
limit as Xy — oo, the right panel will converge towards the left panel. To complete the comparison,
it is instructive to examine the implications for the time series behavior of both ERPs. Consider the
sample path of beliefs from Figure 2. Starting from p*, the belief will jump to about 0.4 after one
jump in consumption and earnings is observed, and to higher levels after a sequence of multiple jumps
with small interarrival times. This implies that the unlevered ERP will first sharply increase from
4% to 10%, and then start to decrease, reaching a minimum of 5%. In contrast, the direction and
magnitude of the change in the levered ERP will crucially depend on the post-jump earnings level, as

it is a function of both belief and earnings.

4.6 Time Series Implications

Figure 12 displays the empirical time series of the 5-year maturity spreads for the Markit North
American Investment Grade CDX Index and its model-implied equivalent in basis points (top panel),
alongside the data on the cross-sectional average CDX leverage in percent (bottom panel), covering
the period from September 2003 to June 2022. The average CDX leverage is calculated using available
CRSP-Compustat data on book debt and market equity, by referencing the constituent list for each
CDX series. To generate the time series for the model-implied CDX, we utilize the leverage time series
from the bottom panel and set the unobserved belief to closely align with the empirical time series of

CDX spreads. Model parameters are set to the values reported in Table 1.
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4.7 Great Depression

The Great Depression is the most severe economic crisis that occurred in the BEA sample of annual
consumption data, and it is often used as the exemplar to motivate models with disaster risks. In
this section, we explore whether our model can generate dynamics in consumption, equity, and credit
prices during simulated Great Depressions, which resemble the data.

To this end, we simulate 10,000 daily consumption paths, time aggregated to annual frequency,
where the cumulative drop in annual consumption growth equals approximately 17%, akin to the
decline observed during the Great Depression. The simulated data is aligned so that the beginning of
a crisis corresponds to time 0, which is the beginning of 1930 in the data. In the following Figures
1, and 13 to 16, we plot the dynamics of model variables averages across 10,000 simulations. It is
worth noting that, since we are dating disasters based on annual consumption data, simulations differ
in terms of the exact time at which a crisis begins.

In Figure 13, the first panel shows the cross-simulation average of annual cumulative consumption
growth from the model and the actual data observed during the Great Depression. Both model and
actual data are normalized such that cumulative consumption growth equals one before the first drop
in annual consumption occurs.

The second panel displays the average number of jump arrivals in consumption and earnings. The
blue bars represent the average number of jumps observed during a particular year, and the red line
represents the average cumulative number of jumps, starting at the onset of the observed disaster.
Specifically, during the average Great Depression, one would observe 2.7, 2.1, 1.5, and 1.0 jumps
during the first to fourth years. Cumulatively, the typical Great Depression features 7.4 jumps.

The third panel displays the average simulated daily time series of beliefs and the average actual
state of the Markov chain. Although individual sample paths of both are highly discontinuous, as can
be seen in the examples of Figure 2, their cross-sectional averages appear continuous when plotted.
For example, during year 0 the Markov chain is in 80% of cases in the high risk state, whereas the
belief is only at about 40% as too few jumps have been observed until that point for the belief to have
been updated to a higher level.

Figure 14 depicts the average 5-year CDX rate in basis points (first panel), average leverage in
percent (second panel) as well as average physical and risk-neutral 5-year default probabilities in
percent (third panel). During simulated Great Depressions, credit spreads rise from 135 basis points
at the onset of a crisis to 197 basis points one year later, and then peak at 224 basis points in the

second year. Similarly, leverage rises from 35% to 44% and 5-year actual default probabilities from
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4.5% to 8.5%.

Figure 1 depicts the average loss in the equity market during simulated Great Depressions. The red
line represents the daily, cum-dividend, inflation-adjusted cumulative equity return on the CRSP Index
observed during the Great Depression. The blue line represents the daily, cum-dividend, cumulative
equity return generated by the model, averaged across 125 individual firms and simulations. The
shaded areas represent the 50, 80, and 90 percent confidence intervals across simulations.

Figure 16 shows the average dynamics of the conditional equity premium during simulated Great
Depressions. The left panel depicts the average daily time series of both the unlevered (red line)
and the levered (blue line) conditional equity risk premiums. The right panel illustrates the time
series decomposition of the conditional levered equity premium into Brownian, jump, and learning risk
premiums, represented by the yellow, purple, and green shadings, respectively.

For example, at the start of year 0 the levered ERP is about 12%, of which about 4.3% is due to
the learning risk premium, 6.7% is due to the jump risk premium, and the remaining 1% is due to

Brownian risk. The units are in decimals.

5 Conclusion

We have developed a firm-level model of optimal default and capital structure embedded within a
consumption-based asset pricing model with an Epstein-Zin representative investor who learns about
the stochastic arrival frequency of economic downturns. A sufficiently long sequence of downturns
creates a drop in consumption, which can be regarded as a crisis. Consumption dynamics are calibrated
to match moments from both an extended sample, including the Great Depression and post-war US
data. We perform a structural estimation via the simulated method of moments to estimate parameters
relevant to firm-level earnings and corporate financing decisions. Our structural estimation targets the
moments of excess levered returns, leverage, and the 5-year CDX rate from 2003-2022. Table 6 shows
how successful this targeting is. We also match the joint time series dynamics of leverage and the
5-year CDX rate from 2003-2022, as shown in Figure 12. Figures 14 and 15 show that our model
generates realistic dynamics for equity returns, credit risk, and leverage for a Great Depression-like
event. Importantly, our model matches the term structure of CDX rates and default rates out-of-sample
as shown in Table 7.

Central to our model’s empirical prowess are two primary economic underpinnings: firm-specific
optimal decisions on default and capital structure, and the Epstein-Zin representative investor’s learn-
ing about the stochastic arrival frequency of economic downturns. Learning magnifies risk premia and

volatilities, but without leverage, risk premia decline as belief uncertainty drops once it becomes clear
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that the economy is in crisis. Empirically, risk premia rise and remain elevated during crises, as do
credit spreads. We show that in contrast to unlevered risk premia, levered risk premia remain elevated
despite a drop in belief uncertainty because leverage continues to rise. Leverage rises because levered
equity dives in value as the distance-to-default closes. Diminishing earnings play a role in closing the
distance-to-default, but so does learning: unlike risk premia, the optimal default boundary does not
depend on belief uncertainty — instead, the default boundary increases as it becomes more evident the
economy is in crisis.

The successful empirical performance of our model suggests that similar frameworks might improve
our understanding of the nexus between asset prices and firm-level real investment, hiring, and risk

management decisions.
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A Notation

A.1 Consumption, Learning Dynamics, and the Stochastic Discount Factor

P objective physical probability measure
Ei[] time-t conditional expectation operator under P
C stochastic process for aggregate consumption
L drift of aggregate consumption growth
Be standard Brownian motion under P
B is Brownian shock to aggregate consumption growth
gc volatility of aggregate consumption growth driven by Brownian shocks
N Poisson process under P, dN is Poisson shock to aggregate consumption growth
and firm-level earnings growth
A\t stochastic intensity of N under P
Al value of the intensity X in the high risk-state (state H)
AL value of the intensity A in the low risk-state (state L)
PHL intensity of transitions from state H to state I under P
OLH intensity of transitions from state L to state H under P
Zc exponentially distributed downward jump in log aggregate consumption
€c rate (or inverse scale parameter) for distribution of Z. under P
1/€c is the mean of Z. under P
Je = ﬁ mean size of jump in consumption growth under P
P probability measure representing the representative agent’s subjective beliefs
M exponential martingale under P used to change measure from P to P
B[] time-t conditional expectation operator under P
Fi the o-algebra representing the representative agent’s information set at time-¢

pt = Pr(Ae = AglF:)

the representative agent’s belief that Ay = Ay conditional on time-t information

At = Apt) =pedg + (1 —p)AL

stochastic intensity of N under P

k=¢rg +PHL

rate at which A converges to its long-run mean under P

fo=oLu/k long-run probability under P that the stochastic intensity of N is in the high risk-state
fL=90uL/K Tong-run probability under P that the stochastic intensity of N is in the low risk-state
op(p) = %p(l —p) representative agent’s belief uncertainty
p) = 2= size of jump in the representative agent’s beliefs
T Zelr] ize of jump in th tati t’s belief:
p* attractor of the representative agent’s belief in between jumps
J representative agent’s value function
JigD) normalized Kreps-Porteus aggregator
B representative agent’s rate of time preference
[ representative agent’s elasticity of intertemporal consumption
y representative agent’s relative risk aversion
V(pt) impact of learning on J measured in units of log consumption
a(pi—) =V (pi— + op(pt—)) = V(p—) jump in V caused by a jump in p
T representative agent’s equilibrium stochastic discount factor
r(p) equilibrium risk-free rate
Op = Yo, price of Brownian risk in log aggregate consumption

@J(Zc t) = eVt — 1]

price of static jump risk in log aggregate consumption

@a(pt—, Zc,t) = @J(cht)[e_(V—l)a(Pt—) _ 1]

price of dynamic learning risk

w(p)

risk distortion factor

A2 (p)

stochastic intensity of N under Q

My

exponential martingale used to change measure from P to Q
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A.2 Firms’ Dynamics and CDX Prices

troll roll date (date at which the composition of the CDX Index is chosen)
tissue time at which corporate debt is issued
7 (troll) set of firms in the CDX Index at the roll date t,..)1

Np(teon) number of firms in the CDX Index at the roll date t,o1

D;s; " time-t nominal value of firm k’s debt

TD.k random default time for firm k’s debt

R§D N nominal stochastic recovery rate

Nt s (troll) fraction of firms in the CDX Index defined at the roll date t,011, that have defaulted
between the times ¢ and s > ¢

Lf s (troll) sum of the nominal payoffs received by the protection buyer up until time s > ¢

Prot® (T —1) nominal present value of the cumulative loss

ScDx CDX spread

Prem (T — ¢, Scpx) nominal present value of cashflows received by the protection seller

X stochastic process for real earnings of firm k&

L drift in real earnings growth rate

gid idiosyncratic Brownian volatility in real earnings growth

Bk standard Brownian motion under P
dB; i is idiosyncratic Brownian shock to earnings growth for firm k&

oy systematic Brownian volatility in real earnings growth

By standard Brownian motion under P, dB; is systematic Brownian shock to earnings growth

total Brownian volatility in real earnings growth

7 exponentially distributed jump in Jog earnings of firm &k
Pex correlation between the Brownian shock to consumption growth
and systematic Brownian shock to earnings growth
k exponentially distributed downward jump in log earnings of firm k&
[ rate (or inverse scale parameter) for distribution of Zj under P
1/€, is the mean of Z; under P
o= 1/ez)/(Q/ec) scaling parameter for mean log earnings jumps relative to mean log consumption jumps
Jy = ﬁ mean size of jump in earnings growth under P
Ny, Poisson process under P
dNy is an idiosyncratic Poisson shock which leads to the exit of firm k by driving its earnings to zero
TX random exogenous exit time
n tax rate
c coupon rate for debt
PX unlevered price-earnings ratio
Jpx (p) size of the jump in the unlevered price-earnings ratio
dR‘g(“le" cum-dividend return on unlevered equity
ERP/mIev conditional unlevered equity risk premium
11 x (p) unlevered equity risk premium from cashflow jump-risk
117, (p) unlevered equity risk premium from dynamic learning risk
S stochastic process for price of levered equity
dRx cum-dividend return on levered equity
Jx(X,p) size of the expected levered equity return stemming from cashflow jump without learning
Jpx (X, D) size of the expected levered equity return stemming from learning without the cashflow jump
D x (X, p) conditional levered equity risk premium from jump-risk in cashflows
D1 (X, p) conditional levered equity risk premium from dynamic learning risk
b(pt) time-t price of a perpetual bond which pays one unit of consumption per unit time
until a jump in Ny g is realized
D stochastic process for price of perpetual corporate debt
o recovery fraction — fraction of after-tax unlevered firm value recovered by debtholders at default
y(X,p) yield on perpetual corporate debt
Xp(p) optimal default boundary as function of p
L debt issuance costs
Fo— firm-value at time 0— net of debt issuance costs
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A.3 Empirics

Flyith debt firm value with perpetual debt
ho debt firm value with no debt
Te corporate tax rate
Te equity payout rate
Tp personal rate
6= (09 657 a, )T [ vector of predefined parameters
] estimate of 6
M) vector of seven model moments
yP vector of seven targeted empirical moments
W € R7X7 seven by seven weighing matrix used in SMM

A.4 Full Information (No Learning): Value Function, SDF and Equity

Returns
V(At) impact of changes in the risk-state on J measured in units of log consumption
when the risk-state is perfectly observable (no learning)
Nij Poisson process under P which jumps up by one when
the risk-state changes from from i to j # i, where 4,5 € {L, H}
P physical generator matrix for risk-state transitions
wi; — 1 price of risk for transitions in the risk-state when
the current risk-state is 7 and the risk-state is perfectly observable (no learning)
3 risk-neutral generator matrix for risk-state transitions
ki discount rate for unlevered equity in risk-state ¢ when the risk-state is perfectly observable (no learning)

K = diag(k1, k2)

diagonal matrix of discount rates for unlevered equity when the risk-state is perfectly observable (no learning)

Ti,x

discount rate for perpetual risk-free debt in risk-state ¢ when the risk-state is perfectly observable (no learning)

R, = diag(Ti,z: Ti,z)

diagonal matrix of discount rates for perpetual risk-free debt
when the risk-state is perfectly observable (no learning)

OR,i,t—

conditional volatility of levered equity returns in risk-state ¢
when the risk-state is perfectly observable (no learning)
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B Proofs

Proof. Equation (2) is the counterpart of the Wonham filter'? for the case where updating is based on observing a
jump process instead of a continuous-path process — the filter can be obtained as a special case of Theorem 19.6, page
332 of Liptser and Shiryaev (2013), and is used in Benzoni, Collin-Dufresne, and Goldstein (2011) and Wachter and Zhu
(2019). Between jump times (2) reduces to a Ricatti ordinary differential equation given by

dp¢ _
= O —AL) [®B(fr —pt) —pe(1 —pe)],
which can be rewritten as d
P — *
i = O =A@ =P p7), (B1)
where
_ 1+& 4fugr
= 1 1— —— B2
b [ 1+ )2 (B2)
« 1+% A4fgk
= 1—4/1— —— B3
b 2 [ (1+7r)? (B3)
_ K
rR= ——.
Ag — AL

We now show that p* is the unique steady state solution of (B1). We do so by showing that p > 1 and p* € (0,1).
From (B2) and the fact that fi € (0,1), we see that

T PR
(1+%)2

= % [(1+R)+ (1—%)2}.

__1+E

P>

We have either K > 1,k = 1,ork < 1. If K > 1, then /(1 — k)2 =%—1,andsop >k > 1. If K = 1, then \/(1 — k)2 = 0,
andsop > (1+%)/2=1. If K <1, then \/(1 —%)2 =1 —K, and so p > 1. Therefore p > 1.
Similarly, via (B3) and and the fact that fg € (0,1), we see that

147 1=
< 1—4/1———|,
b 2 [ (1+7)2

from which it follows that p* < 1. It follows immediately from (B3) and fg € (0,1) that p* > 0. Therefore, p* € (0,1).
If the last jump time is denoted by 7, then we can solve the Ricatti differential equation (B1) to obtain the following
solution for beliefs between jump times:
1
(Pr — p*)~LeOH-ADAET) | (A — Ap)—L[l — eCr-ALAE—D]’

pr=p* +

where 7 is the most recent jump time, ¢t > 7, and

_ . Afgk
A—(1+/€)H1—7(1+E)2.

Proposition B1 The representative agent’s stochastic discount factor is given by

7(Cy,pe) = Be™P fot[l—(nr—l)V(;Ds)]dsCt—’Ye—(“r—l)V(;Dt)7
where for p € [0,1], V(p) satisfies the functional differential equation

) %eu—w)[v«%)p)—wm] ~

0 = V' (p) + A(p) T2 — — BV () + e — 5702, (B4)

where
pp(p) = &(fu —p) — (Ag — AL)p(1 —p), (B5)

where at the internal point p* € (0,1), given by (B3), we have

ie(lfv)[V«%)p*)*V(z’*)] _ )
0=A(p)—2 - =BV (") + pe = 700 (B6)

19See Wonham (1964) and applications in David (1997b), Veronesi (1999), and Veronesi (2000).
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Proof of Proposition B1. We derive the functional differential equation for V' (p), given in (B4). Let J; be the value
function for exogenous aggregate consumption as defined in (4), the Feynman-Kac theorem implies

J(Cry Jy—)dt + By [dJ(Cr.pe)] = 0.
Using Ito’s Lemma we rewrite the above equation as

1 - _
0= f(C -, Jt_)+ﬂcct_Jt_7c+§UEC,527 Jt_,co+up(pt_)Jt_,p+/\(pt_)Et_ [J(Ct,pt) — J(Ct_,pt_)ldNt = 1}7 (B7)

where pp(-) is defined in (B5). Note that when dN; = 1 both arguments change in J(C,p). We guess and verify that
the representative agent’s value function is given by (6). From (1) we know that if a jump occurs at ¢, then

Cy = Ct_(l + (e_Zc’t — l)) = Ct_e_Zc’t7
while from (2) we can see that

A — A(pe— A
— <1+ H — APt ))_ H

= = = Dt—-
Alpe-) Alpe-)
Together with (6), we can now see that

—Ze,t\1— _ _AH
_ (Ct—el _/yt) ve(l ’Y)V(A(Ptf)pt_> — IH(Cope)

— J(Cieype_) e(lw) [*Zc,t‘l’v((%)Pt—)*V(pt_)] i

J(Ct,pt) — J(Ct—,pt—)

Substituting (6) and (B8) into (B7) yields

Ny =1 V(5555 ) ) Vo] |

1—x

Et— [e_(l_')’)zc,t

(B9)
where pp(p) is defined in (B5). We know that Z.; is negative exponentially distributed with mean 1/e. > 0 under P
(and hence P). The probability density function for Z. s is given by p(z) = ece™<c®, x > 0, and so

1 N
0= fic — 5703 — BV (pt—) + pp(pe— )V (pe—) + Mpe )

—0Zc,t =1| =E =07, ] = [Teecertrgy - [T o (eetdag, o _ L= Je
By [e |dN 1] By [e AN 1] /0 cce da /0 cce b= s = T
(B10)
which implies
N 1
~(=NZet|gN, = 1] = (=N Zert 1N, — 1] — c
By [e |dN; 1] By [e AN, 1] — (B11)

a1

where J. is the average drop in consumption due to a jump, i.e. € = o
c

1. Therefore, (B9) can be written as

REV AR (i )m-)-ve]

1 < =
0= pie = 5702 = BV (pe=) + p(pe—)V' (pe=) + Alpe—) — T :

and so, setting p;— = p gives the functional differential equation (B4). We set p = p* in (B4) to obtain the condition
(B6).

Proof of Proposition 1.
We now derive the dynamics of the SDF. Duffie and Skiadas (1994) show that the SDF for a general normalized
aggregator f is given by
m = elo Fo(Csdodds ¢ (¢ gy,
where fe(-,-) and fyu(-,-) are the partial derivatives of f with respect to its first and second arguments, respectively, and
J is the value function given in (4). Thus, taking the derivatives of (5) and substituting (6) we obtain

7 = BeP fot[1+(1—7)V(ps)]dsct—ve(l—“/)V(Pt), (B12)
Applying Ito’s Lemma we obtain
_ om . om o Lo 0m o Ve i+ (1-7)a(pe—)
i = G Coo B2 (redt + oedBey) + 5o up(pi-)dt + 5 CF sozoidl+ (e - 1) AN,
d 1
S = B+ (L= DV ()] = Vet + 0cdBe) + (1= DV (pr)pp(pe= )t + 571+ 7)o2dt + (770t 0=02() —1) an,
t—
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and so

d
ﬂ-ﬂ _ —ﬁ(pt—)dt _ ’YUchc,t + (e’YZc,t‘F(l_’Y)a(pt*) — 1) dNt,
t—

where a (p¢—) is defined in (7) and k(p¢—) is given by the following function
1
K(p) = B+ pe = Sy (LMo + (7= 1) (mp(@)V' () = BV () -

We now use the functional differential equation (B4) to eliminate the dependence of x(p) on V' (p), i.e.

f_;’;]ie(l—v)[V((%)p)—V(p)] 1

1 1 .
K(p) = B+ e =S¥+ 702 = (Y= 1) | pe = 5708 + Ape) g :

1—vJe

1 ) 1, - 1=Je (1-v)alp) _ 1
=B+ape — 571+ voe — (v - 1) (uc—270c+/\(pt) T )

5 1-Je -
=B+ pe — v + Apt) 7Je(1 MalP) _1).
1—~Jc

Now, in the absence of arbitrage, we have
E‘t_ [d?‘rt} = —’I"t_ﬂ't_dt,

where r¢_ is the time-t— risk-free rate. Therefore,

d -
O dt— YoedBes + (e’YZc,t‘F(l—’Y)a(Pt—) _ 1) dNy — XMpe—) (Et— [e7Zet|dNy = 1]e(t—a(pe—) 1) dt
Tt —
- 1—Je _
= —ri dt —y0cdBet + (evzcﬁ(l*v)a(pt—) - 1) ANy — Mpi—) (me(l Ma(pe-) _ 1) dt,
— Je Y
and r¢— = r(pt—), where

) = w0~ (T e~ 1) S0,

1—

dNy = 1] = ﬁﬁ Using the definition of the risk distortion factor in

and we have used the fact that E't_[e'yzc,i
(12), we see that

d ~
My dt — yoedBey + (evzcﬁ(l—w(“—) - 1) ANt — A(pe—) (w(pe—) — 1) dt. (B13)
Tt—

In order to distinguish the impact of jumps in beliefs from jumps in consumption, we rewrite (B13) as

d -
o —ri—dt —yocdBet + [e”’zﬂvt —14erZet (e(l_V)“(pi—) - 1)] dN¢ — AMpe—) (w(pe—) — 1) dt. (B14)
T

We now define the stochastic process M, as the solution to the following stochastic differential equation under P

M <
% - [eVZc,te(l—’Y)a(Pt—) _ 1] dN; — Mpi—) (W(pt—) — 1) dt, My g = 1.
T, t—

We see that My is an exponential martingale under P and defines the change of measure from P to Q, and so the
risk-neutral intensity of N, denoted by AQ(p;—), is given by

@} B [ My, dNt]7

A pe-) = B [ dt M, dt

where, of course, Ey_ [Mr,t] = Mz —. We now evaluate Ey_ [A]yi”t’t_dNt].

By [hdm] =By [{1 + [eﬂc,teﬂ*v)a(m—) - 1] ANt — Ape—) (w(pe_) — 1) dt} dNt]

T, t—

=By [{1 T [eﬂc,teU*v)a(Pt—) - 1] o) (wpe) — 1)dt} |dN; = 1] A(pe_)dt

=B [evzcwdm = 1] e=Ma(Pe—) X(py_ )dt + o(d).
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Hence,

A8 (ps—) = Er- [ewzc‘qut = 1] ed=me(Pe-) X (p, )
1—Je

= Taragne UAee).

To distinguish between the impact of static jump risk versus dynamic learning risk, we rewrite the above expression as

~ 1-—J 1—J
A%(pe_) = Mpi— ¢ c (1-va(pe-) _ 1 ]
(pe-) = Mpe ){1—(1+7)Jc+1—(1+w)Jc (e )

We hence obtain (11). We can now rewrite (B14) as (8).
]

The unlevered price-earnings ratio of a firm is given by

~ s X
pX, :Et |:/ 77d5j| )
! AP0

where we omit the subscript k for ease of notation.
The unlevered price-earnings ratio will depend on the representative agent’s belief that the economy is in the high-risk
state, i.e. px ¢+ = px (pt). The risk premium on a firm’s unlevered price is its unlevered equity risk premium.

Proposition B2 The conditional unlevered equity risk premium for a firm is given by
dR}gflf”

dt

ERP™M = By —7(Pe-) | = OB pex + lx (p-) + L (pt-), (B15)

where the premium for Brownian risks in cashflows is given by O oy’ pex = Y003 pex, the premium for jump-risk in
cashflows is given by

Ix (p) = (w(®) = DAP)J= >0
and the premium for learning risk is given by
L (p) = (w(p) — DAP)(L — Ju) Jpx (p) > 0,

where

__(px @1 +4h0@)])
e )=~ rx®) 1) >0

Proposition B3 The price-earnings ratio px (p) solves the functional differential equation
0= p(P)Px () = (r(p) + Az +70c05"pex — 1) px (P) + w(P)AP) [px (P[1 + Jp(0))) (1 + Jz) — px (p)] + 1. (B16)
with condition
0=—(r(P*) + Aa + 7005 pea — piz) px (%) + w(P)AP®) [px (P*[1+ Jp(p*)])) (1 + Jz) = px (p*)] +1  (B17)

Proof of Propositions B2 and B3.
The cum-dividend return on a firm’s unlevered equity is denoted by dR‘;(nLe", where, using Ito’s Lemma, we obtain

/
. 1
ARy = PP Vit padt + Y4B, .y + 0 dBy s + ———dt
px (pe-) px(pt—)
[px <pt— 5\&7?_)) Xi—e Zht —px(pi—)Xi— | ANt — px (Xt—)X¢—dNy ¢
+
px (Xi—)Xi—
_AH —Zp,t

P'x (pt) bx (pt_ A(pt_)> €

. 1
= =X (pe- )dt + pedt + 03 dBy oy + 03 dBey + ————dt +
px (pt—) px (pt—) px (pt—)

| —Zy,
id sys bx (pt_ S\(pt_)) ‘ '
dt + O de,kyt + UCL‘y de:t - devt +

(ux + Mu(m—) +
px (pe—)

)
px (Pt—) px (pt—)
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Therefore, the conditional expected cum-dividend return is given by

/
B lanipl) = (e + X2

_ .
Px (pt— X ) B B
w(pt—) + L) dt — Agdt + (i) By [e‘Zk’f] — 1| A(pe—)dt
px (Pt—) px (pt—) px (Pt—)
- v
px | pe— =
P’y (pt—) 1 ) ( A(mf)) € <
= (o + = p(pt—) + ——— | dt — Agdt + — 1| A(pe—)dt,
( px(pe—) px (Pe-) px (Pe—) 1+e '
and

Al
Px \ Pt—3
_ d ( Alp _))
—Fy_ [dR%ievﬂ} = ’yO’co';yspcacdt — i ‘o
’ Tt —

px (pt—)

— 1| (wpes) = DA(pe_)dt
1+ ey (w(pe-) JA(pe—)
Thus, from the basic asset pricing equation

By [dR"erltev - 7’(Pt7)dt] =B {ngcrfiev

dmy
Tt— ’
we see that the conditional unlevered equity risk premium for a firm is
B d Runlcv
B Xt

Al
sys N px (pt_ S\(Pt—)) €x
i T(pt—)| = Y00 pea — (W(pt—) — D)A(pt—)

— l s
pPx (pt—) 14 €z
which we can rewrite as (B15). We also obtain the following functional differential equation
0 1 rx (r35)
Px (P X c
0=z + 2 u(p) + et | B
px (p) px(p)

_ A(p) — r(p) = yocol’®
px () 1+e, (p) (p) = v0c07" pea

and so

/

0= N(p) Px (p) ! - (T(p) + Az + 'Ya'ca'iyspcac -
px(p) px(p)

Al
ua+w@ﬂ@>px@”“) &

px(p) l+e
which we can rewrite as

0= p@)P’x (p) — (r(p) + Az +70c0 pex — ) px (P) + w(P) (D) [px (p A )

€x
= - + 17
o) ) T+ px(p)
from which we obtain (B16). Setting p = p*, we obtain the following condition
* * K\ Y [ * € *
0=—(r(p*) + Ao + 7005 pex — o) px (P*) + w(P)AP") |px | P = —— —px(®")| +1,
)\(p*) 1+ €x
which gives (B17). m
We define

de +

f}

= —dNXx k.1,
Ck,t

meaning that ¢ stays fixed until a jump in Nx j, is realized. We now consider a perpetual bond which pays one unit of
consumption per unit time until a jump in Nx j is realized. The time-t¢ price of such a bond is denoted by b(p¢), where

o0
b(m):Et[/t ffd}

and we omit the k& subscript for ease of notation.
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Proposition B4 The time-t price of a perpetual bond which pays one unit of consumption per unit time until a jump
in Nx i, is realized is denoted by b(ps—), where b(p) satisfies the following functional ordinary differential equation

0= u(@)V' () — (r(p) + Xa) b(p) +w(@)A®) [b (p[L + Jp(P)]) (1 + Jz) — b(p)] + 1, (B19)

with condition
0=—(r(P") +A2) b(P") + w@)AP*) [b (" [1 + Jp(p™)]) (1 + Jz) — b(p")] + 1. (B20)

Proof of Proposition B4. The instantaneous return on the bond, including the coupon flow, is given by

wpe—) +

db(pe—) +dt _ <b/(pt_>
b(pt—) b(pt—)

_AH —Zyt
b (pt‘ A(m)) ©

dt—deﬂg-F — 1| dNg.
b(pt—)

b(pt—)

From the principle of no arbitrage, we obtain

~ |:db(pt_) + dt

Ey i) —T(pt—)dt:| = _B,_ {@%}

Tt— b(pt—)

Therefore, we obtain

+1,

0 = pu(p)b' (p) — (r(p) + Az) b(p) + w(p)A(p) [b < ) : f% —b(p)

from which we obtain (B19). Setting p = p*, we obtain the following condition

0 =w(P*)Ap*) [b (p* ;\/(\p}i)> 1 fﬁz - b(p*)] —(r(®") +A2) b(p™) + 1,

which gives (B20). We solve for b(p) via Chebyshev collocation. ®

Proposition B5 The price of levered equity S(X¢,pt) satisfies the following Hamilton-Jacobi-Bellman Variational
Inequality (HJIB-VI):

min{(/\x +r(P)SX,p) = (1 =)(X = ¢) = (pz = 1005 pea) X Sx (X, p) — 1(p) Sp(X, p)
1 - _ -
X028 x (X, p) = Bi[S(Xe Pt p(1 4+ J(p))) — S(X,p)| AN, = UA(p)w(p), S(X.p) | =0,
with boundary conditions
lim S(X,p)=0
X—=0
and

Jim S(X,p) = (1 —n) (px ()X —b(p)e).

Proof of Proposition B5. The cum-dividend return on a firm’s levered equity is given by dR; = gti + %dt,
and so using Ito’s Lemma, we obtain
Xi— 0Si—

dRe= 5= (uxdt + 0 9dB, b + U;YSde,t) +

0Ss— 1 =—n)(X¢— —¢)
_)dt+ ————m—
S opr pp (P )dt + S,

dt

1 X2 825,
[S(XemeZht pe [1+ Jp(pe-)]) = S(Xem,pem) | dNe + [0 = S(Xem,pem)] dNg e + 5 == 2

2
dt
25 ox2 *

+

Xt_ 8St_ 1 BSt_ 1 Xt2_ 82St_ 2 (1 — T])(Xt_ — C) Xt_ 85,5_ id
- Ot () + - dt idgR, Y4B
(St— X, M + Si_ ope tp (Pt )+ 25, BXE_ Oy S, + S, 0X;_ (Uac kit Oy ac,t)
Xi—e 2kt py_[1 _
i S(Xi—e 1 Pi—[1 4 Jp(pe-)]) “1|dNy — dN,
S(Xt—,pt—)

where

S\ 2
o2 = (i) + (0372
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Therefore, the conditional expected cum-dividend levered equity return is given by

Xi— 8Si- 1 98- 1X7 928, 1—n)(Xe— —
i 05 1 98, L R e )0, C)>dt+

5 ox T 5 o pp(pe—) + =

Ey_[dRi] =
- [dh] ( 25, 9X2 ° Si_

Ape—)dt — Agdt
S(X¢—,pt—) } (=) ‘

N {Et_[S(xt_e-Zkvt,pt_u + Jpe)DIdNe =1]
and

~ d
—E |:th£1| :’Yo'co';yspcac

. Xew 98— {Et_[sm_e-zkwt,pt_ [+ Jp(pe)))]dNe = 1] 1} Ao ) lpe) — 1)t

St_ 8Xt— S(Xt—apt—)
Thus, from the basic asset pricing equation

Et_ [th — T(pt_)dt] = —Et_ |:th;1_£:| s
t—

we see that the conditional levered equity risk premium for a firm is

S {Et_[s(xt’eZ’““pt—[1+Jp<pt->1>|dNt —q

Si_ 0X4_ S(Xi_,pe_) - 1} Alpe—)(w(pt—) — 1),

- dR,
b |:d7tt:| —r(pt) = 70c07  pea

which we can rewrite as (14)
We also obtain the following functional partial differential equation

Xi_ 88— . 1 08 1X2 828, , (1—n)(Xi— —0)
x T c ;S cx —_— — — p _ _ )\;v
Si— 90X G 7005 pex) + Sy Opt Hp(pe=) + 2 Si— 8Xt2_ 7 St— (r(pe=) + Az)
Ei_[S(Xi_eZrt p,_[1 WIdN: = 1 _
__JE-[S(Xi-e p=[L+ Jp(pe-)DIANe = 1] A (i),
S(X¢—,pt—)

which is valid when the firm is not in default, i.e. X¢— > Xp(pt—). When X;— < Xp(pt—), we have S(X¢—,pi—) = 0.
Hence, we obtain (B21). m
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C Full Information (No Learning): Value Function, SDF and
Equity Returns

Proposition C6 When the value of the transition intensity At is always known, then the representative agent’s value
function is given by

J(Ct, Ae) = h(eV P y), (C1)
where

1 2 Je wy—1

He — 570 = ALT=%5 + OLH T
V(AL) = 2 T = (€2)

B
1., 2 J, wy -
HBe — 5708 — AH =5~ + ¢aL =

Vg) = —2-° S . (C3)

and wy > 0 is given by the nonlinear algebraic equation (C8), which has a unique solution if and only if B2 > 4drLHOHL -

Proof of Proposition C6. The representative agent’s value function is of the form (C1), where the function V(A¢)
captures how the (physical) intensity of jumps in consumption impacts the agent’s utility. For ease of notation, we shall

write
J(Cr, \i) = Ji(Cy) = h(eViCy), i € {L, H}

where

We now derive a system of nonlinear algebraic equations for V7, and Vy. With exogenous aggregate consumption
the Feynman-Kac theorem implies

f(Ce—, Ji)dt + Ei— [dJ;(Ce—)|Ae— = Xs] = 0.

Using Ito’s Lemma we rewrite the above equation as

1 L
0=75(Ci, Ji(Ct—))+Ncct—Ji(Ct—)+§UECt2— Ji,co(Cr=)+Xi (Bi— [Ji(C)|dNy = 1] = Ji(Ct-))+¢i; [Jj(Cr—) — Ji(C-)], § # i
(C4)
We guess and verify that the representative agent’s value function is given by (C1). From (1) we know that if a
jump occurs at t, then
Ci = Ci (14 (e7Zet —1)) = Cp_e Zest,
Together with (C1), we can now see that
Ji(Ch)

Er_ [Ji(CH)|dNy = 1] — Ji(Cy_)) = Ji(Cy_) (Et_ [m\dNt = 1} - 1)

= J;(Ci) (Et_[e’(l’V)ZC\dNt —1]- 1) .

Using (B11), we hence obtain

1—J J,
B [H(CINe =1 = J(C) = (€ [$725 —1] = 3G ) = D (c6)
1— ’YJC 1-— ’YJC
Substituting (C1) and (C6) into (C4) yields the following system of nonlinear algebraic equations for Vz, and Vi:
1 J 6(1*7)(‘/}'*Vi) -1 o
0=pic — =702 —BV; — N St i i, €{L,H}, j #1i. (cn)
2 1—~Je 1—~
Therefore, we obtain the following nonlinear algebraic equation for Vi, — Vi
J. (=1 (Va—-VL) _1 e(I=M(VL—-VH) _ 1
0=—B(VL — Vi) — (AL — Ag)——— + ¢ru —¢HL .
1— ’)’Jc 1-— Y 1— v
Defining
wy = e DVL=VH),
we obtain the following nonlinear algebraic equation for wy
Je -1
0=pBmnwy+(y—1)(Am — )\L)ﬁ +¢LH — ¢HL — PLEHWA + PHLW) - (C8)
- (&
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By definition wy > 0. We now prove that for wy > 0 the above equation has a unique real solution if and only if
62 < 4¢rpdmr. We define

7,
h(z) = BInz + (y— 1)(Ag — A\) ———— + ¢y — dur — dra® + ¢gre™ ',z >0,
Je

1—~J

which is a continuous function. Therefore, h(z) is monotonically decreasing if and only if h/(z) < 0 for z > 0. Now

and so h/(x) < 0 for = > 0 if and only if

¢LH:1:2 — Bz + ¢ > 0forx > 0.

We know that ¢y > 0 and 8 > 0, and so the condition will be satisfied if and only if the roots of the quadratic
orur? — Br+ ¢ are complex. By computing the discriminant of the quadratic, we can see that the roots are complex
if and only if 82 < 4¢rL ¢ L, yielding the required result.

From (C7) we can now see that

1 2 J wy—1
v He = 3Y0; = ALT=57 + $LH T
L — 9
B
1 2 2 J w;l—l
v He = 370 — AHTZ57- T PHL 1=
H = -
B

Proposition C7 When the value of the transition intensity A¢ is always known, the dynamics of the equilibrium SDF
are given by

dmy

S n =x = T — ©pdBe, + (€740t = 1) AN + (wiy — DdNije, j # 1, 1,5 € {L, H]}, (C9)
Tt —

where the risk-free rate r(A;) = r; is given by

1—J J,
2 c c
g = — — A , C10
mi= Bt e =000 AT T (C10)
J.
_ 2 Q c
= — -\, C11
B+ pe —0g o (C11)
and the risk-neutral jump intensity is given by
1—-J
Aoy ——— (C12)
1-— (’Y + 1)Jc

The price of jump-risk is given by e¥%e — 1 and wij — 1 is the price of risk for transitions in the risk-state when the
current risk-state is i, where

WLH = W)\, WHL = w;1~
The risk-neutral transition intensities for risk-states are given by ¢%, j#1t, 4,9 €{L,H}, where
Q _
Qsij = Wij (lszg

N;j is a Poisson process under P which jumps up by one when the risk-state changes from from i to j # i, where
i,j € {L, H}.

Proof of Proposition C7. We now derive the dynamics of the SDF. By adapting (B12), we obtain
= Be=B I IHA=NVA)lds 0= (1=NV (Ae)
Applying Ito’s Lemma we obtain

omy oy 1 o 0%m
dmy = —dt + Cy— —— (cdt dB -C
Tt o1 + Ct aC, (,U«c + oc c,t)+ 5 t= 80?

4 [56—5 JoHQ=NVOlds 0y (1Y _ ge—#B fot[1+(1—7)V(As)]d80;_76(1—W)Vi] dNij ¢

o2dt + (eWZc,t - 1) AN

dre

1
T = B[+ (1= V()] = Y(predt + oedBey) + (1 +7)o2dt + (7700 ~1) dNy
t—

+ [e“—’ﬂ("a‘—"i) - 1] dNij+, (C13)
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where N;; is a Poisson process under P which jumps up by one when the risk-state changes from from i to j # i, where
t,7 € {L, H}. We substitute the expressions from (C2) and (C3) into (C13) to obtain

d A
T’” = (A )dt — yoedBes + (evzc,t - 1) dAN¢ + (wij — 1)dNij4, j # i, i, j € {L, H},
t—

where

(1= Je)de
ATt = (v + D)Ie)

r(\t) = B+ pe =707 — A

giving (C10). The risk-neutral jump intensity is given by

/\(t@— = A_FE¢_ I:BA/ZC’t]
1—Je
VI et/ S
1-— (1 + 'Y)Jc

and so we obtain (C11) and (C12). With ©p defined as in (9), we obtain (C9) from (C13). m

Proposition C8 When the jump transition intensity, ¢, is always known the time-t unlevered price-dividend ratio is
given by

px,t = Px(At),
where px (AL) = px,r and a px(Ag) = px, g are the elements of the vector Py = (px,[”px,H)T, given by
p,=(K-99~'L (C14)

The 2 by 2 matriz K is the diagonal matriz of discount rates given by

K = diag(k1, k2), (C15)
where
ki = 7i + Aa + 1005 pea + AP + 0% — i, 6,5 € {1, H}, j # . (C16)

The 2 by 2 matric ®2 is the risk-neutral generator matriz for risk-state transitions given by

-2k L,H}—{i Cka 1=
[‘I’Q]ij={ LB} T L (C17)
¢ij , 1 F g

1=(1, 1)T is the 2 by 1 vector of ones. The unlevered risk premium is given by

unlev
X,i, X BN g EX
- [ =) A = Az] = 7000 pea + OF = M)Jo = (6 = 613) L0 € (L HY, £ 8(019)
N3

Proof of Proposition C8. The time-f unlevered price-dividend ratio depends on A¢, which is known, and so
px,t = px(Ae)-
For ease of notation, we define
px,L =Px(AL), px,H = px(AH)-

Conditional on the current risk-state being ¢ € {L, H}, the cum-dividend return on a firm’s unlevered equity is denoted
by dRanlieZ, where, using Ito’s Lemma, we obtain

i 1 A )
ARV = padt + 0184 B, gy + 035dBy s + ——dt + (e~ 7t — 1)dNy — dNg , + 22X —PXd gy
PXx,i PXx,i
Therefore, the conditional expected cum-dividend return is given by
1 A )
By [dRSIY] = pgdt + +——dt + X (Befe™ 2%t [dN; = 1] — 1) — Apdt + ¢bg; Lot — Pt gy
Y X,i X,i
1 1 —Dx.i
= padt + +——dt — N — Apdt + ¢;; 2L PXd gy,
DX, 1+ e PX,i
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and

d
B, dRBéilf,ZﬁﬂIAt— = \i| =900 pendt — Ny [e7 %t —1]dN; = 1By [e~ 2kt — 1[dN; = 1]dt — ¢y (wij —
t_

where we have exploited the independence of 7. ¢ and Zk,¢- We now use the same calculation as in (B10) to see that

By_[emZrt|dN, = 1] = —=
€x+1
Using the above result and (B11), we see that
—Fy_ {dR%ngezﬂl)\t_ = /\{| = ’YO’CO';yspcgcdt + )\iLdet — (f)m' (w,—j — 1)wdt.
Oy 1—Je(147) DX,

Hence, we obtain

drr
Ei_ [dR;‘;jﬁfgm—tm_ - /\i] =700 peadt + (\] — i) Jodt — (63 — ij)

PXx,; —PX,i
PX,i

dt.
Thus, from the basic asset pricing equation
unlev dmy .
FEyi_ [dRX,i,t — T(/\t_)dﬂ/\t_ = >\z:| =—Fy_ dRX’i’tr't |>\t— =1,

we see that the conditional unlevered equity risk premium for a firm is

dRY2EY PX,j — PX,i
Et— |:dt’l’ - r()\t—)‘)\t— = )\,L:| = ’YO’CU;ySpc:L‘ + ()\(,L@ - Al)Jz — ((bg - ¢z])#’
X,i

which we can rewrite as (C18). We also obtain the following linear equation system
¢epx,; — kipxi+1=0,7#1, 14,5 € {L,H},
where k; is defined in (C16). We now write the above system in vector-matrix form as follows
_3Q _
K-® )BX =1,

where K is defined in (C15), ®? is defined in (C19), Py = (px,0,px,m) ", and 1 = (1,1)T. It follows that P, is given
by (C14). 2° m

Proposition C9 When the jump transition intensity, A¢, is always known the time-t perpetual bond price is given by
by = b(Ae),
where b(Ar) = by, and a b(Ag) = by are the elements of the vector b= (by,,by) |, given by

b=c(Ry — )11
The 2 by 2 matrix Ry is the diagonal matriz of discount rates given by

Ro = diag(ri,4,72,2),
where o o
Tix =Ti+ Xe, 1,5 € {L, H}, j # 1.
The 2 by 2 matric ®Q is the risk-neutral generator matriz for risk-state transitions given by
-~ Q .
[®9);; = ZkE{L’g}_{i} ik 1 D 7 . (C19)
¢ij ,iF£ ]

1=(1,1)T is the 2 by 1 vector of ones.

20 The 2 by 2 matrix ® is the physical generator matrix for risk-state transitions given by

>k 1Pk 1=
B, — e(L.H}~ {1} =
[®l:s { ®ij , 1 F g
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PX,i

dt,



Proof of Proposition C9. Proposition C9 is a special case of Proposition C8 obtained by setting cashflow risk to
zero. W

Proposition C10 The conditional levered equity risk premium for a firm is given by

_z
X Sx (Xe—, Ni) B [S(Xt_e k’t’)‘i)] — (X, h) (
S(Xt—, i) S(Xt—, Ai)

dRx ;
L Y

Pez )\(9 _ )\i)

_S(Xi—, Ay) = S(Xe—, M)
S(Xe— M)

(63 = ¢ig), 1,3 € {L, H}, j #1i.

Proof of Proposition C10. The time-t levered stock price is denoted by S(X¢, A¢), where A¢ is known and can take
two values: Az, and Ag. The levered return is denoted by dRx ¢, where

Xe—Sx(Xt—, \i) id
dRx it =dRx |y, =x;, = W [uzdt + o0y dBg k.t + af’cysde,t] +

A-—m(Xt—0) b+ S(Xi_e et N) — S(Xi—, \i)

dN;,
S(Xt_,Ai) S(Xt_,Ai) ‘

S(th,)\j) — S(-thv /\1)
S(Xt—, i)

— dNg,¢ + dNijt,1,5 € {L, I}, j # 1.

The conditional volatility of levered equity returns is given by

2
Sx(Xe—, Ai)\ 2 S(Xe—e Zrt N;) — S(Xe—, Ai S(Xe—, Aj) — S(Xe—, M)\ 2
ORijt— = (7)(( t )) 02+ A + By [( (Xe—e ) (Xe )> }AH—( (Xe—, &) (Xt l)> Pij-

S(Xt—, i) S(Xt—, \i) S(Xt—, i)

The conditional expected levered cum-dividend return is given by

Sx(XimA) | (=X —a) | Fim [SCXi—em P00 ] = S(Xem A

Ei_[dRx ;i t] = ta dt dt Aidt — Agdt
il = e a0 T st T S ) :
S(th,/\j) — S(Xt77)\i)
+ ¢ij dt
%ij S(Xe—, M)
and
_ _e7Zrt A | = S(X—, Ai)
dmy . Sx(Xe—,\;) Ey [S(Xt e R Z] A .,
—Fi_ |dRx jt+— | M= = N\i| = sys dt — Ey_[e72et] — 1) \;dt
t X, ’tﬂt—l t i YOOy Pecx S(Xt—7)\7,‘) S(Xt-,)\i) ( t [P ] ) i
S(Xt—,Aj) —S(Xe—. \)
— ¢pii(wii — 1 dt
bij(wij ) S(Xi—, Ap)
Thus, from the basic asset pricing equation
dm .
By [dRx, — (A )dth— = A = —F¢ |:dRX,i,tﬂ_7t|)‘t— = l} ,
t—

we see that the conditional levered equity risk premium for a firm is

dRx ; s
B [T )N = A =002

3

—Z
XeoSx(Xio,A) P [Pt )] - 50X ) (

Y
S(Xt—, i) S(Xt—, \i) l>

_S(Xi—, Ay) = S(Xe—, i)
S(Xt—, \i)

(63 — 6i),
and so for X > Xp ;

0= (o —10c0%) Sx (X, Xi)+ [ Be [S(Xe™ 2t 20)] = S(X M) | APHS(X, A) =S (X, A)l6T+(1-0) (X —0)—(r(A)+Xa) S(X, Ay).
We thus obtain the following HJB-VI:

min{(r(ki) +22)S(X ) = (1 =0)(X = &) = (4o — ¥0e05pea) X Sx (X, As) = [S(X, A7) = S(X, X))o
S0 A) = SCGAIBY — [Ei-[S(Xe™ %, 0] = S(X, 00| AD), S(X, 0 } =0,

with boundary conditions
lim S(X,X) =0
X—=0

and
Jim () = (1—7) (px ()X — b(\)e)
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Figure 2: Learning Dynamics

This figure illustrates simulated sample paths for the unobserved Markov chain, the belief p; that
the Markov chain is currently in a high-risk state, the Markov modulated Poisson process N;, and
its time-varying intensity A;. Model parameters are set to the values reported in Table 1. Across all
panels, the hidden Markov chain transitions into the high jump risk state in year 10 and exits this
state in year 14, as indicated by the grey background shading. The top right panel depicts the sample
path of N;. As the Markov chain switches regimes, the frequency of jumps in N; changes notably. The
top left panel illustrates the evolution of the belief over time. The belief is updated in accordance with
the observation of jumps (or the lack thereof) in IV; according to (2). Between jump arrivals, the belief
continuously decays towards the lower bound p*, represented by the dashed line. On the other hand,
with each arrival in V¢, the belief increases sharply. The bottom panel compares the true value of the
A with its estimated value S\(pt) = A (1 —p) + A pi. As the Markov chain enters the high-risk
state, the true intensity increases nearly tenfold, leading to a notable increase in the frequency of
observed jump arrivals in N; and, consequently, a rapid upward adjustment of the belief. Eventually,
the estimated ;\(pt) approaches the true \; , albeit with a delay. Conversely, after the switch in year
14, the arrival frequency drastically declines, causing the belief to decay steadily and the estimate of
A¢ to decrease.
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Figure 3: Learning about Risk and Welfare

This figure illustrates the function V(p;—). As p;— increases, V(p:—) decreases leading to a decrease
in the agent’s indirect utility, as can be seen from equation (6). The dashed red line represents p*, the
lower bound for p;. Model parameters are set to the values reported in Tables 1, 3 and 5.
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Figure 4: Learning and Amplification

This figure depicts a(p;—) representing the signed change in V(p;—) due to an upward jump in p;.
For example, if a jump is observed when p;_ is 0.2, V(p;—) will drop by approximately —0.05. Given
the relationship of V(p;—) and the agent’s indirect utility, see equation (6), this quantity can be
interpreted as an additional impact of a downward jump in consumption on welfare via the learning
channel equivalent to a further decrease in consumption of approximately 5%. The magnitude of
this amplification effect increases in the agent’s belief uncertainty and vanishes as the agent’s belief
approaches perfect certainty. The dashed red line represents p*, the lower bound for p;. Model
parameters are set to the values reported in Tables 1, 3 and 5.
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Figure 5: Risk Distortion Factor

This figure plots the risk distortion factor w(p;—) linking the subjective consumption jump arrival
intensities under the physical and the risk-neutral measure, see (11). As is to be expected, for any p;_
the jump arrival intensity is higher under Q given that w(p;_) > #{1}17) > 1 for all p;_. It decreases
as the agent becomes more certain about the current state and increases in belief uncertainty. The
dashed red line represents p*, the lower bound for p,. Model parameters are set to the values reported
in Tables 1, 3 and 5.

2.2 wpe).

Figure 6: Risk-free Rate

This figure illustrates the locally risk-free rate r(p;—). Uncertainty about the state of the world makes
r(p;—) time-varying. As the agents belief rises, so does the demand for safe assets, driving up the
risk-free bond price and depressing the equilibrium risk-free rate which eventually turns negative for
pt— > 0.7. The dashed line represents p*, the lower bound for p;. Model parameters are set to the
values reported in Tables 1, 3 and 5.
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Figure 7: Unlevered Price-Earnings Ratio

This figure displays the unlevered price-earnings ratio px(p;—). Uncertainty about the state of the
world creates fluctuations in firm-level price-earnings ratios. As the agents belief rises, prices and
price-earnings ratios of risky assets fall. This is because downward jumps in consumption and perfectly
coinciding jumps in earnings are perceived to be more likely when p;_ is high, thus making risky assets
even riskier. The dashed red line represents p*, the lower bound for p;. Model parameters are set to
the values reported in Tables 1, 3 and 5.
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Figure 8: Optimal Default Boundary

This figure shows the optimal default boundary Xp(p:—) of a firm that issued debt when its earnings
were X; = 1 and the belief about the state of the economy was p; = p*. Default is declared when X;
falls below X p(p;—) for the first time. Uncertainty about the state of the world makes Xp(p;—) time-
varying. In expectation, the increased frequency of drops in firm earning in the high risk state makes
the firm less profitable and increases the probability that potential losses incurred by equity holders
over the short term will not be recouped in the long-run. This makes earlier default, i.e. default at
higher levels of Xy, optimal. Therefore, Xp(p;—) is increasing in p;—. The dashed red line represents
p*, the lower bound for p;. Model parameters are set to the values reported in Tables 1, 3 and 5.
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Figure 9: Histogram of Consumption Disasters

This figure compares the distribution of consumption disaster sizes and durations as implied by the
model (top panels) and observed in historical data (bottom panels). The empirical distributions of
of sizes and durations are constructed from the tables reported in Barro and Ursua (2012). Model
parameters are set to the values reported in Table 1. We define disasters, in accordance with the
empirical methodology of Barro and Ursua (2012), as path segments during which consecutive annual
growth rates of consumption are negative and cumulatively result in a drop of more than 10%. Disaster
durations are reported as years of consecutive negative annual growth. Consumption drops are reported
as cumulative simple growth rates over the entire duration of a disaster event.
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Figure 10: CDX Pricing

This figure depicts the term structure of CDX rates in the left panel and the term structure of physical
and risk-neutral default probabilities in the right panel. CDX spreads are annual and reported in basis
points per unit of notional for contracts with a fixed time to maturity from 1 to 10 years. Model
parameters are set to the values reported in Tables 1, 3 and 5. Empirical averages are computed from
daily data on Markits North American Investment Grade CDX Index obtained from ICE Data Services
for the period from September 2003 to June 2022. Default probabilities are reported in percent for
horizons ranging from 1 to 10 years. Empirical default probabilities are the average cumulative issuer-
weighted global default rates reported by Moodys spanning the period from 1920 to 2017 for entities
categorized as investment grade (letter rating of Baa3 or better).
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Figure 11: Equity Risk Premium

This figure displays the conditional equity risk premium of unlevered firms (left panel) and levered
firms (right panel). The blue lines represent the learning model. The yellow lines represent the model
with full information in the high-risk state (yellow markers) and low-risk state (black markers). For
the levered firms, earnings are normalized to 1. The initial belief for the learning model is set to p*
and the inital state for the model with full information is set to Ar. The dashed line represents p*,
which is the lower bound for p;. The remaining model parameters are set to the values reported in
Table 1.
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Figure 12: Time Series of CDX and Leverage

This figure displays the empirical time series of the 5-year maturity spreads for the Markit North
American Investment Grade CDX Index and its model-implied equivalent in basis points (top panel),
alongside the data on the cross-sectional average CDX leverage in percent (bottom panel), covering
the period from September 2003 to June 2022. The average CDX leverage is calculated using available
CRSP-Compustat data on book debt and market equity, by referencing the constituent list for each
CDX series. To generate the time series for the model-implied CDX, we utilize the leverage time series
from the bottom panel and set the unobserved belief to closely align with the empirical time series of
CDX spreads. Model parameters are set to the values reported in Tables 1, 3 and 5.
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Figure 13: Great Depression — Consumption

This figure presents cross-sectional averages of 10,000 model simulations, where the cumulative drop in
annual consumption growth equals approximately 17%, akin to the decline observed during the Great
Depression. The simulated data is aligned so that the beginning of a crisis corresponds to time 0,
which is the beginning of 1930 in the data. Model parameters are set to the values reported in Table
1. The first panel shows the cross-simulation average of annual cumulative consumption growth from
the model and the actual data observed during the Great Depression. Both model and actual data
are normalized such that cumulative consumption growth equals one before the first drop in annual
consumption occurs. The second panel displays the average number of jump arrivals in consumption
and earnings. The blue bars represents the average number of jumps observed during a particular
year, and the red line represents the average cumulative number of jumps, starting at the onset of the
observed disaster. The third panel displays the average simulated daily time series of beliefs and the
average actual state of the Markov chain.
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Figure 14: Great Depression — Credit Market

This figure presents cross-sectional averages of 10,000 model simulations, where the cumulative drop in
annual consumption growth equals approximately 17%, akin to the decline observed during the Great
Depression. The simulated data is aligned so that the beginning of a crisis corresponds to time 0,
which is the beginning of 1930 in the data. The results are averaged across 125 individual firms and
simulations. Model parameters are set to the values reported in Table 1. In the top panels, the figure
depicts the average 5-year CDX rate in basis points (left panel), and average leverage in percent (right
panel). Blue lines represent the learning model, red lines represent the model with full information.
In the bottom panels, the figure depicts average physical and risk-neutral 5-year default probabilities
in percent (using blue lines and red lines respectively) for the learning model (left panel) and model
with full information (right panel).
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Figure 15: Great Depression — Equity Market

This figure presents cross-sectional averages of 10,000 model simulations, where the cumulative drop in
annual consumption growth equals approximately 17%, akin to the decline observed during the Great
Depression. The simulated data is aligned so that the beginning of a crisis corresponds to time 0, which
is the beginning of 1930 in the data. The red line represents the daily, cum-dividend, inflation-adjusted
cumulative equity return on the CRSP Index observed during the Great Depression. The blue line
represents the daily, cum-dividend, cumulative equity return generated by a model, averaged across
125 individual firms and simulations. The shaded areas represent the 50, 80 and 90 percent confidence
intervals across simulations. The figure depicts the results for the model with full information without
leverage (top left panel), the model with full information and leverage (top right panel), the learning
model without leverage (bottom left panel), the model with learning and leverage (bottom right panel).
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Figure 16: Great Depression — Equity Risk Premium

This figure presents cross-sectional averages of 10,000 model simulations, where the cumulative drop in
annual consumption growth equals approximately 17%, akin to the decline observed during the Great
Depression. The simulated data is aligned so that the beginning of a crisis corresponds to time 0,
which is the beginning of 1930 in the data. For the case of levered equity the results are averaged
across 125 levered individual firms in addition. Model parameters are set to the values reported in 1.
The figure depicts the daily time series of both the unlevered (red line, right y-axis) and the levered
(blue line, left y-axis) conditional equity risk premiums. The graphs are vertically aligned such that
they begin at the same point and scaled such that their local maximum and inflection point are at the
same height.
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Table 1: Model Parameters

This table summarizes all the exogenous parameters for the model. There are 17 parameters in total: 7
for the consumption process, 2 for preferences, 5 for the firm-level earnings process, and 3 for corporate
financing decisions.

Panel A: Consumption Process

Consumption growth rate e
Consumption growth volatility Oc
Jump intensity state L AL
Jump intensity state H Al
Markov chain transition intensity from state L to H ¢y
Markov chain transition intensity from state H to L ¢y,
Jump size 1/ec
Panel B: Preferences
Time discount rate B
Risk aversion v
Elasticity of intertemporal substitution P
Panel C: Firm-level Earning Process
Consumption-earnings correlation Pex
Earnings growth rate Ly
Idiosyncratic risk olid
Systematic risk osys
Exogenous exit rate As
Panel D: Corporate Financing Parameters

Corporate tax rate n
Debt issuance costs L
Bankruptcy recovery fraction o
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Table 2: Consumption Dynamics

Panel A: Parameters

Consumption growth rate e 0.0240
Consumption growth volatility O 0.0113
Jump intensity state L AL 0.1708
Jump intensity state H Al 1.6960
Markov chain transition intensity from state L to H ¢y 0.1224
Markov chain transition intensity from state H to L ¢y 0.3816
Jump size 1/e. 0.0247
Panel B: Long Sample
Data Model
Mean disaster size 0.1659 0.1661
Mean disaster duration 3.6667 3.6567
Likelihood of disasters ~ 0.0360 0.0360
Panel C: Post-War Sample
Data  Model
Mean consumption growth 0.0183  0.0183

Std. dev. of consumption growth  0.0154  0.0151
Skewness of consumption growth -1.1000 -1.1017
Kurtosis of consumption growth 5.7480  4.9636
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Table 3: Predefined Parameters

Parameter

Time discount rate
Risk aversion

Elasticity of intertemporal substitution

Consumption-earnings correlation

Earnings growth rate
Exogenous exit rate
Corporate tax rate
Debt issuance costs

Value

5 0.0435
~ 10
P 1
Pex 0.2
te  0.0511
As 0.011
n 0.154

L 0.01

Table 4: Sensitivity Matrix

This table shows the sensitivity of model-implied moments (in rows) with respect to model parameters

(in columns). The sensitivity of moment ¢ with respect to parameter j equals

at the vector of point estimates from Table 5.

oM g; .
20, TIT and is evaluated

id

o o 1l—a p
Average excess return 0.31 -0.05 -0.39 1.13
Average leverage 0.75 -0.19 -1.04 0.11
Average 5-year CDX rate 1.87 -0.12 -1.26 2.04
Std. dev. of excess returns 1.30 -0.01 -0.61 0.36
Std. dev. of market excess returns 0.40 0.21 -0.38 0.79
Std. dev. of leverage 0.70 -0.02 -0.39 0.10
Std. dev. of 5-year CDX rate 1.27 -0.11 -1.55 2.64

Table 5: Estimated Parameters

Parameter Value
Idiosyncratic risk old 0.1809
(0.0073)
Systematic risk o3y 0.0522
(0.0437)
Bankruptcy costs 1—a 0.3435
(0.0841)
Jump scaling parameter %) 3.2787
(0.3282)
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Table 6: SMM Moments

Moments Data  Model
Average excess return 0.0090 0.0079
Average leverage 0.2894 0.2737
Average 5-year CDX rate 0.0077 0.0072
Std. dev. of excess returns 0.0917 0.0977
Std. dev. of market excess returns 0.0505 0.0418
Std. dev. of leverage 0.1589 0.1533
Std. dev. of 5-year CDX rate 0.0034 0.0038

Table 7: CDX Moments

CDX Rate P Def. Prob. Q Def. Prob.
Horizon Data  Model Data  Model Model
1-year 0.0022 0.0021 0.0014 0.0018 0.0031
2-year 0.0035 0.0034 0.0040 0.0042 0.0085
3-year 0.0051 0.0046 0.0072 0.0071 0.0166
4-year 0.0064 0.0059 0.0108 0.0103 0.0277
5-year 0.0077 0.0072 0.0148 0.0140 0.0427
6-year 0.0089 0.0086 0.0188 0.0179 0.0612
7-year 0.0096 0.0100 0.0229 0.0221 0.0845
8-year 0.0105 0.0113 0.0270 0.0267 0.1104
9-year 0.0111 0.0126 0.0313 0.0318 0.1394
10-year 0.0113 0.0138 0.0356 0.0371 0.1707
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