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Abstract

Using data from over 56,000 simulated auto races worldwide, we analyze risk taking at
the margins, consistent with reference-dependent preferences. We show that partici-
pants’ risk-taking changes when a desired intermittent outcome is presented, sometimes
at the expense of a more favorable expected end state. Specifically, we find that inter-
mediate kinks in the reward function induce players to take reduce (increase) risk in
the vicinity of opportunities to increase (lose) temporal wealth, providing important
intuition regarding the incentives for risk-taking at the margin of wealth kinks (e.g.
retirement age, family changes, etc.). Risk avoidance appears to increase as the kink
approaches, but risk-taking increases with more individual investment.
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1 Introduction

Behavioral economics emerged as classical models of economic behavior were adjusted to an-
ticipate observed behavior. For example, two paradoxes were introduced by Allais (1953b,a),!
continued with a note by Samuelson (1963), and eventually stated as Prospect Theory by
Kahneman and Tversky (1979). Today, Prospect Theory is widely accepted, recognizing
that individual preferences may vary at certain reference points. For example, an individual
may evaluate a risky outcome based on the wealth level achieved from previous choices and
outcomes (Készegi and Rabin (2006)). The reference point divides between perceived gains

and losses, resulting in behavior inconsistent with classical expected utility theory.

Given the Prospect Theory predictions about reference points, principal-agent theory pre-
dicts performance boosts in the final stages of long-term contracts and shirking in early stages
of such contracts (O’Neill and Deacle (2019)). In particular, expected utility-maximizers can
be assumed to exert effort until their marginal benefit equals marginal cost. The extent of
moral hazard in this relationship depends on the individual’s own costs of negotiating a
new contract and the overall costs of monitoring individual performance (Fudenberg and
Tirole, 1990). Thaler (1999) suggests that “mental accounting” assigns activities to various
accounts and ignores the impact of outcomes of those activities on other activities. As a
commonly observed phenomenon, mental accounting supports prospect theory in that agents
will focus on one account to the detriment of another, and to the detriment of the agent’s

total portfolio.?

We find evidence consistent with the literature discussing final contract stages and their
impact on individual decision-making. Increased individual effort in these final contract
stages — “where it matters” — has been observed in economic studies in sectors such as sports
and public procurement. Indeed, when a professional athlete approaches the final period of
his contract and nears possible renewal, he balances the expected rewards of increased effort
with the expected costs of resulting injuries — mentally optimizing the expected value of
the next contract. Conversely, once the team extends the contract, the incentive to relax

prevails, since early contract performance may matter less.

Tt is shown that patterns of choice can be inconsistent with expected utility maximization models,
mostly revolving around violations of the independence axiom within Expected Utility Theory.

2Notably, Rabin and Thaler (2001) suggest mental accounting as sufficient rationale for individuals
carrying low liability limits while paying significant premiums on internal wiring insurance, inconsistent with
expected utility maximization. Mental accounting would also justify varying effort over the life of a contract.



This is confirmed by Frick (2011) using the German Bundesliga for soccer player effort levels.
When the outcome of individual effort is uncertain and risks are involved, individuals tend
to increase risk-taking at the margin, aiming for potential better status, and then reducing
risk-taking in other situations to protect their current status. Indeed, Frick (2011) finds that
player performance lags, on average, in the early years of a player’s contract and “significantly
improves” in the last year of the contract, giving evidence of a meaningful kink in the reward

structure.

This study answers such questions using a unique dataset containing over 56,000 simulated
auto races. In auto racing simulations, participants join a virtual auto race, using home
computers or gaming systems connected to a central server via the Internet. This study
employs data from the simulation to evaluate whether and how individual risk taking changes
when individuals get closer to a situation where performance matters more. It thereby
contributes to the literature on risk taking by providing a rationale for adjustments in “final-

contract-stage” behavioral patterns as related to individual risk taking at the margins.

Recent literature highlights that in field settings, it is not always obvious which reference
points are important for subjects making decisions under risk. As discussed in Barberis
(2013), identifying appropriate reference points is only possible in rare scenarios. One such
scenario has been examined by Allen et al. (2017), who study a large data set of marathon
finishing times and show that “round numbers” (including, for example, Boston Marathon
qualifying times, or hour / half-hour increments) serve as reference points in such a running
environment where runners may set round finishing times as their aspiration levels. Similarly,
the scoring and advancement system of iRacing (our simulated racing platform) represents
another ideal environment to study field evidence of such reference-dependent preferences.
Thus, our results add to those of other studies where reference points may differ for indi-
viduals, and where the reference points are exogenously established by the platform rather
than the individual. Since our large sample consists of (presumably) nearly exclusively male
drivers, there is no gender effect to disturb risk taking choices. Another main difference
of this study when compared to Allen et al. (2017) is that the marathon setting is not a
zero-sum game; a runner’s finishing time has no direct effect on another runner’s finishing
time (though, at elite levels where “place” matters, a runner’s finishing position necessarily
effects another runner — this is not binding on more casual racesr). Rather, a racer’s success

in iRacing negatively impacts all racers who finish behind a particular racer.

Does risk taking change when individuals get closer to a margin where “it matters more” how



they perform? Following economic theory on principal-agent relationships, one would expect
performance boosts in the final stages of long-term contracts and shirking in early stages of
such contracts. In sports, for example, unpublished work by citetfeess2010incentive extends
the work of Frick (2011), providing further empirical evidence that average performance of
soccer players in the German Bundesliga decreases in contract length. Interestingly, long-
term contracts impact the performance distribution asymmetrically, in the sense that they
increase the probability of poor performances but do not reduce the probabilities of good
performances. lossa and Rey (2014) propose a theoretical explanation, finding that incen-
tives are stronger and performance higher as a contract approaches renewal. In American
professional basketball, for example, it has been shown that player performance improves
significantly in the year before signing a multi-year contract, and declines after the contract
has been signed (Stiroh, 2007). Similarly, O’Neill and Deacle (2019) provide evidence that
Major League Baseball (MLB) players’ effort levels vary according to their positions in the
contract cycle, using 2007-2011 data. Specifically, by controlling for time-invariant player
traits, fixed-effect regression models show that MLB players increases effort in the final years
of their contracts. Players also tend to shirk in the first years of new long-term contracts

that last four to six years.

In this vein, we extend the research to the (largely) non-professional e-sports world. Our
simulated auto racing dataset provides evidence consistent with research about professional
athletes that risk-taking behavior changes at the margins, where kinks in the reward func-
tion are present. While this setting does not have the pecuniary benefits associated with
professional sports contracts, players are competing seriously for status (iRating) and access
to more competitive heats (safety score, converted to license level, with potential for more
significant iRating movement). Thus, we take advantage of an explicit kink in the safety

score-license level relationship to explore risk-taking behavior at that kink.

This study is organized as follows: The next section reviews relevant literature. Section 3
presents the iRacing.com simulated auto racing platform and lays out basic characteristics of
the gaming platform of interest. Section 4 describes the data and variables of interest used
in the study. Section 5 derives our hypotheses. Section 6 presents the econometric model

and empirical findings. The last section concludes.



2 Related Literature and Conceptual Framework

A study by Halek and Eisenhauer (2001) uses life insurance survey data to estimate the Pratt-
Arrow coefficient of relative risk aversion for almost 2,400 households in the US. Attitudinal
differences toward pure risk are examined across demographic subgroups. An interesting
finding is that self-employed peoples’ attitudes toward speculative risks do not differ from
others, yet they are significantly more averse to downside risks than those employed by
others. Similarly, at the margin, education increases individual risk aversion to pure risk
but also increases the willingness to accept a speculative risk. This may relate to a desire to
control one’s environment: one must actively seek out speculative risks, whereas one merely

reacts to pure risk when it is realized.

Brunnermeier and Nagel (2008) use the Panel Study of Income Dynamics to study how house-
holds’ portfolio allocations change in response to wealth fluctuations. They find that per-
sistent habits, consumption commitments, and subsistence levels can generate time-varying
risk aversion, showing that the share of household liquid assets invested in risky assets is
not affected by wealth changes. The authors identify inertia as one of the major drivers
of household portfolio allocation. This finding is consistent with early research by Samuel-
son and Zeckhauser (1988), who show that agents are slow to make decisions about risk,
tending to maintain prior decisions, even in the face of new information. Dohmen et al.
(2011) find in a large study that personal characteristics have an economically significant
impact on risk aversion in general. An additional experiment confirms the behavioral va-
lidity of this measure. Turning to other questions about risk attitudes in specific contexts,
the authors find similar results on the determinants of risk attitudes, and also evaluate the
potential lack of stability of risk attitudes across contexts. Peter (2021) generalizes several
existing approaches in the literature, including Eeckhoudt and Gollier (2005) and Dionne
and Li (2011), to obtain findings on how decision-makers trade off comparative risk aversion
against comparative downside risk aversion. Whether both effects are aligned depends on
a probability threshold unique to the benchmark agent’s utility function, allowing for an
entire class of decision-makers sharing the same comparative static prediction relative to
this reference agent. Paravisini et al. (2017) estimate risk aversion from investors’ financial
decisions in a person-to-person lending platform and find that wealthier investors are more
risk averse in the cross-section and that investors become more risk averse after a negative

housing wealth shock.



Going beyond expected utility studies, Greer (1974) was the first of many questioning pre-
vailing utility theory’s ability to predict the decision-making process of individuals. Greer
and Skekel (1975), following Hoskins (1975), argued that actual decision-making might re-
sult from a utility function of nonclassical shape — a function with one or more “kinks” —
in contrast to the classical utility function attributed to von Neumann and Morgenstern.3
These studies suggest that individuals may tend to be more risk-averse (i.e., the utility func-
tion might be more concave) up to a certain reference point or utility level, implying that
risk aversion is not stable over final wealth levels. Indeed, empirical studies of kinked utility
functions show that such utility functions exhibit first-order risk aversion at the kink and
can explain the common empirical findings of a general preference for full insurance, even
when the premium is not actuarially fair (Segal and Spivak (1990)).* Riley and Chow (1992)
find that risk aversion tends to decline with wealth, level of education, and age, but only
until the age of 65, when risk aversion goes up. Note that the traditional retirement age
of 65 represents a “cusp” in the sense that agents adjust to a different lifestyle and income

source.

In addition to the ”cusps” we are faced with in our lives, our individual experience level and
skill development may also impact our risk-taking. Chains of prior successes or failures can
lead to changes in a person’s risk attitude over time, despite the relegation of the “hot hand”
to the pool of logical fallacies. In a study by Brocas et al. (2019), the impact of prior gains
or losses was observed in the behavior of almost half of subjects. The majority took more
risk after a gain. Hot hand fallacies notwithstanding, this phenomenon is often explained
by the “House Money Effect” in which an agent plays as though money won in the game
is separate from their total wealth. Similarly, it has also been shown in several experiments
that people are less likely to take risks after prior losses. For instance, Kdészegi and Rabin
(2006) predict reference-dependent risk attitudes, where reference points are determined
endogenously by the economic environment. Here, the authors tested incremental outcomes
with little understanding of prior decisions - prior tests relied on “house money”. Since
wealth is rarely known at the beginning of an experiment, the individual’s decisions are only

evaluated with respect to money that they earned inside the experiment.

Hersch and McDougall (1997) examine risky decisions as displayed in [llinois Instant Riches,
a televised set of three different games of chance, providing a natural experiment for assessing

3See Greer and Skekel (1975), p. 843.
4Kinked utility is also discussed by Sinn (1982) in a different context.




the risk taking behavior of individuals. They find that income is insignificant as a predictor
of risk taking. Post et al. (2008) study house-money based decisions in the game show
Deal or No Deal. In contrast to traditional expected utility theory, they find that choices
can be explained in large part by previous outcomes experienced during the game. Finally,
Gertner (1993) studies the bonus round of the game show Card Sharks. He finds that assct

segregation may be an important driver of decision-making under risk:

“If this phenomenon is present in the risky decisions that individuals make, such as insurance
and portfolio selection, the expected-utility model may not be appropriate. People may make
these decisions ignoring their overall wealth level, but instead, base the decision only upon

the direct stakes involved.”®

2.1 Conceptual Framework

This study evaluates risk taking by mostly amateur simulated auto racing participants, in
particular "when it matters”. It will be shown that when there are ”cusps” or kinks in
individual utility functions, following the idea of incentive wealth areas where effort matters,
simulation participants take more risk given opportunities to increase wealth or status at a
"cusp”. Three examples of a functional form of such a utility function are shown in Figure
1. It can be demonstrated in a simple model that reference dependent preferences imply
bunching of performance at or around the reference points, ”where it matters”. Indeed,
reference dependent preferences entail that individuals assess outcomes marginally above or
below the (neutral) reference point in a manner divergent from conventional utility theory.
The perceptual differentiation of outcomes proximate to the reference point can manifest in
various qualitatively distinct forms. For an individual with twice continuously differentiable

utility u(+),, using reference point r, reference dependence can take three primary forms:6

(a) Discontinuity in the form of a ”jump” at r:  limc o u.(r + €) # lim._,o u.(r — €)
(b) Discontinuity in the first derivative at r: lime_o ul.(r + €) # limeo uL.(r — €)

(¢) Discontinuity in the second derivative at r:  lim. o ul(r + €) # lime_o ul(r — €)

5See Gertner (1993), p. 520.
6See Allen et al. (2017).
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Figure 1: Utility functions with a cusp at r expressing different forms of reference-dependent
preferences (Allen et al. (2017)).

The discontinuity in the first derivative at r is often referred-to as loss aversion. Wakker
and Tversky (1993) define loss aversion as follows: An individual is loss averse if the utility
or benefit function is everywhere steeper in losses than for the respective comparable gains.
Then, function u,(.) expresses higher loss aversion than function v,(.) if the utility functions
coincide for gains but u,(.) is steeper than v,(.) everywhere in losses (see (b)). It is shown
by Allen et al. (2017) that "more loss averse” is related to bunching of performance near the
reference point.” This is because higher loss aversion increases the marginal benefit of effort
short of the reference point, boosting motivation to get there. Similarly, it can be shown
that a discontinuity in the second derivative of the utility function, implying diminishing
sensitivity to gains, can also lead to bunching near the reference point. However, any form
of reference dependence will produce bunching and behavior will thus deviate from expected

utility theoretical predictions.

“In economics, bunching often refers to the clustering of economic activities or behaviors around specific
thresholds or notches created by policies or regulations. For example, if a tax policy imposes higher rates on
income above a certain level, individuals might adjust their earnings to stay below that threshold, resulting
in a bunching of incomes just below the cutoff point.



3 Description of the Racing Platform

3.1 eSports and Sim Racing

Starting in the early 1970s, eSports began as a niche hobby, with events such as a 1972
Stanford University Competition which involved the video game Spacewar. In this video
game, participants competed for a "grand prize” of a Rolling Stone magazine subscription.
Only recently, as of 2019, the eSports industry recorded an estimated $1 billion revenue
worldwide (Russ, 2019), with single event prize pools reaching $25.5 million for the 2018
DOTA 2 International Competition (representing more than double the 2018 U.S. Open golf
prize pool) (Ingraham, 2018). Single eSports events, like China’s Battle of Balls Professional
League, have attracted roughly 13,000 in-person viewers and 5 million online viewers (Chan,
2018). The City of Arlington, Texas is building a $10 million, 100,000 square foot dedicated
eSports arena at taxpayer expense (Albright, 2018). Lando Norris, a real-world Formula 1

driver, streams simulated races on Twitch and has 1.2 million followers.®

Sim racing is a genre of eSports that involves a user manipulating specialized hardware
(steering wheels, pedals, shifters, and button boxes) to control a virtual car around a virtual
track through simulator software running on a PC or gaming console. The driver sees the
racetrack from the perspective of the vehicle’s cockpit on their gaming monitors or through
a virtual reality headset. A sample hardware setup for this platform is shown in Figure 2.
Similar platforms exist for bicycle racing, running, and other endurance sports. The major
advantage of using data from this software for research is that is makes the user experience

very realistic and so conclusions drawn from our data should match real-world behavior.

Advancements in hardware, processing power, telemetry, and scanning methods have dimin-
ished the gap between sim racing and real world racing. Motoring media publisher TopGear
reported that champion Finnish sim racer Greger Huttu, does not actually possess a driver’s
license and had never driven a real car?. Nonetheless, he came to the Road Atlanta facil-
ity and drove a 260bhp Star Mazda open-wheeler race car to determine how well he could
translate his sim racing experience to the real world. The coaches were impressed with his

speed. “The telemetry confirms it. His braking points are spot on. He’s firm and precise on

8This Twitch channel can be accessed at https://www.twitch.tv/landonorris and metrics can be
accessed at https://www.twitchmetrics.net/c/174809651-1andonorris.
9This story is related at https://www.topgear.com/car-news/gaming/geek-rebooted.



Figure 2: Examples of Sim Racing hardware setups.

the throttle. And in the fastest corner, he’s entering at 100mph compared to an experienced
driver’s 110 — a sign of absolute confidence and natural feel for grip. Remember, this is a
guy who has never sat in a racing car in his life — he’s only referencing thousands of virtual
laps. Then, on lap four, he pops in a 1:24.8, just three seconds off a solid time around here.”
In another anecdote, a NASCAR team recruited William Byron based on his winning record
in sim racing. Professional race car drivers, including Dale Earnhardt, Jr., Kyle Larson, and

Joey Logano use sim racing to train and learn new tracks!®.

3.2 iRacing

iRacing (http://www.iracing.com), is a subscription-based sim racing platform developed
by iRacing.com Motorsport Simulations in Bedford, MA and made available to the public
in 2008. Co-founder John Henry is a principal owner of the Boston Red Sox and Liverpool
Football Club. iRacing offers one of the market’s most realistic and authentic simulated
racing experiences to its members. They use LIDAR technology!! to laser scan real-world
racetracks which are accurate to one millimeter. For cars, iRacing developers use telemetry
data and “scan, weigh, and measure each part of the actual race cars and assemble them
digitally, giving users a mathematically correct vehicle to drive on the mathematically correct

racing surface” (Brown, 2008).

10T his story is related at https://www.foxbusiness.com/features/
nascar-taps-into-e-sports-to-recruit-young-fans-drivers. Other user experiences are related at
http://iracing.com/testimonials/.

"For a description of LIDAR, see http://oceanservice.noaa.gov/facts/lidar.html.
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iRacing’s platform is unique in that competition is solely on-line, in contrast to other racing
simulation software (e.g., Assetto Corsa, Project Cars 2, Automobilista, rFactor 2). There
is no single-player mode (with the exception of practice rounds, known as “hotlapping”)
and all competitors are human participants, with no artificial intelligence (AI) or random
number generator (RNG) competition. All competition is against other subscribers to the
service, which boasts over 200,000 members, 80 official series, 400 private leagues'?, and a
2021 annual prize pool of $330,000 for the eNASCAR Coca-Cola iRacing Series alone (see

https://www.enascar.com/coca-cola-iracing-series/).

3.3 Pricing and Scoring Model

iRacing charges its participants a subscription fee, with premium content available for an
additional charge. Its members, referred to as iRacers, subscribe by paying monthly or
annual fees (ranging from $13 per month to $199 per two years) giving them access to
iRacing’s base content of 18 cars and 18 tracks. Additional cars (50+) and tracks (60+) are
available to license at prices from $11.95 to $14.95, each with volume and package discounts
available. iRacing has licensing partnerships with numerous real-world racing organizations
and race car manufacturers and series (e.g., NASCAR, Renault, Mazda, Porsche, Blancpain,

and McLaren'?), which afford them the rights to model and sell vehicle licenses to iRacers.

To promote safe, organized, and competitive races, iRacing ranks each iRacer with two
independent ratings: (1) iRating and (2) safety rating. An iRacer could have a very high
safety rating with a low iRating or vice-versa. Races occur in 4 disciplines: Road, oval, dirt
road (also known as rallycross), and dirt oval. iRacers have separate scores for iRating and
safety rating in each category, but most iRacers focus on one racing category. The present

study focuses on a series in the “road” discipline.

“IRating”, following the Elo system used to rank chess players (Coulom, 2007), is a measure
of an iRacer’s ability to win races and finish near the front of the pack. Each race is a
zero-sum game, where iRacers take a share of iRating from all drivers who finished behind
them and lose iRating to all drivers who finished ahead of them. A driver who finishes ahead

of another driver with a higher iRating will gain more iRating than beating a driver with

12Membership data current as of January 2022. A complete overview of the platform can be found at
http://iracing.com/overview/.
Bhttps://www.iracing.com/partners/.
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a lower iRating. All iRacers start their career in each category at 1,350 iRating. Given
the zero-sum game of iRating, that number is also the theoretical average iRating across all
iRacers. In 2018, the highest iRating was held by Ty Majeski, a 22-year-old from Wisconsin
whose iRacing success earned him a position as a development driver for Roush Fenway
Racing (Lawrence, 2018). The highest iRating in mid-2022 was held by Max Benecke, a sim
racer from Germany whose iRacing success earned him $46,000 in prize earnings in 20214
and he is a sim racing endurance event teammate of the 2021 real-world Formula 1 champion

Max Verstappen.

“Safety rating” is a measure of a driver’s ability to drive safely and avoid incidents, where
incidents include leaving the track, losing control of the vehicle, or making contact with other
cars. Each violation is considered an incident, with more severe violations penalized more
harshly. For example, having more than 50% of one’s car off the track surface results in a
1x incident, while a hard collision with another vehicle results in a 4x incident. Incidents do
not assign blame, so in the case of a reckless driver who T-bones another car in the braking
zone, both drivers would be assessed a 4x incident. Most races have an incident limit (for
cxample, in most races lasting less than an hour, the incident limit is 17x). Once an iRacer
surpasses that limit, the driver is immediately disqualified. For this study, a high incident

count is assumed to be correlated with unobserved risk-taking behavior.

3.4 License Levels

iRacing uses the number of corners driven per incident received as the measure to determine
a driver’s safety rating. The iRacer sees their safety rating in terms of license classes.
All iRacers begin in the rookie (R) license class and can progress through safe driving to
D, C, B, A, and Pro licenses. Each level requires a progressively higher degree of safe
racing and affords the iRacer opportunities to race in more challenging series. Similarly,
license levels can be lost by amassing high incidents per corner. Once an iRacer crosses the
threshold of a license level or sublevel (either an increase or decrease), their safety rating also
immediately increases/decreases by 0.4 to minimize bouncing between levels. This immediate
increase/decrease generates the wealth kink we are examining in this study. License levels
are identified by both a license level and a sublicense level (from zero to 4.99). In order

to move to a higher license level, iRacers must complete a sufficient number of races with

Mnttps://www.esportsearnings.com/players/54552-maximilian-benecke
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an increasing number of corners per incident (CPI). As CPI increases, there is evidence
of the iRacer’s increasing skill in avoiding incidents, which suggests increasing likelihood of
contributing to a safe racing environment. iRacing has a designated system by which iRacers
can earn license levels, in which increases in safety score and license level are increasingly
difficult to earn. This system is illustrated in Figure 3. The chart illustrates the non-linear
relationship between corners per incident and safety score, and shows the kink points for
each license level (the orange line is a Class D /beginner but not rookie — their safety score
increases pretty quickly the cleaner their record. The black line is for a Pro. They have to
drive cleanly for many more corners to improve. It also shows how the size of the kink is

much larger as you move toward pro-level licenses.

iRacing: Required CPI For License Level
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Figure 3: iRacing License Level Chart. Source: iRacing user guide.

While a driver’s safety score may change with each race, license promotions occur only at
the end of a 12-week season. Demotions also occur at the end of a season; however, if an

iRacer’s safety rating falls below 1.0, demotion happens immediately.

3.5 iRacing Series

Within each of the four racing categories, iRacing schedules dozens of official 12-week series.
Each series runs with a particular car (e.g., Formula Renault 2.0) or class of car (e.g.,
GT3) for the entire season, changing tracks weekly. Races run as frequently as hourly or as

infrequently as weekend only, depending on the popularity of the series. All series have a
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minimum license class required to participate. Rookie series all use the base iRacing content
included with subscriptions and include lower-powered cars at less-challenging tracks. The
fastest cars and most challenging tracks are limited to series requiring higher license levels
(C, B, or A) For example, iRacers who want to compete in the popular VRS GT3 Sprint

series must first earn and maintain a B license.

3.6 Race Process

Once an iRacer registers for a race, they must either participate or forfeit — the equivalent
of having finished last in the race. iRacing divides the registered drivers into splits based
on (1) the number of cars accommodated on the track’s starting grid and/or pit lane and
(2) the drivers’ iRatings. If 60 iRacers register for a race on a track that accommodates
20 cars, the 20 drivers with the highest iRatings will comprise the top split, the 20 drivers
with the lowest iRatings will comprise the bottom split, and the 20 remaining drivers will
comprise the middle split. A brief practice session ensues, followed by a qualifying session,
where drivers have a set number of minutes and/or laps to set their single best lap time.
The fastest qualifying time among the drivers in the split will start the race on pole position,
with each slower qualifying time on the grid behind that driver. Drivers who fail to qualify
(either by choice or because they could not complete an incident-free qualifying lap) will
start on the grid behind qualifiers, with their iRating determining their grid position. Races
last a set number of minutes or laps, with penalties automatically assessed throughout the
race for false starts, cutting corners, speeding in the pit lane, etc. Such penalties would
require a driver to enter the pit lane for a stop-and-go or stop-and-hold for a number of
seconds. Drivers with damaged vehicles may enter the pit lane for repairs. If the vehicle
is too damaged to drive to the pit lane, they can request a “tow” to their pit stall, which
incurs a time penalty before the repair ensues. After the race, iRacing adjusts each driver’s
iRating and safety rating according to their performance on the track and strength of field

(average iRating of all iRacers in the split).

3.7 Violations and Protests

iRacing has a protest system to minimize abuse of the platform’s no-fault incident system.

After races, members can protest competitors for violation of the iRacing Sporting Code, a
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37-page document that all members must agree to abide by when registering. Violations
include intentional wrecking, retaliation, blocking (swerving on a straight to avoid being
passed), and abusive behavior or language in voice or text chat during a session or offline on
the forum. iRacing staff review each protest claim and can serve warnings or consequences,

including feature restriction or suspension/loss of membership.

4 Data

Our data are taken from race results from ten consecutive 12-week racing seasons, from
December 2018 to May 2020. To ensure stability of the data generating process, we chose
the ten seasons of the Skip Barber Race Series that occurred during this time period. All
races involve the same vehicle, the Skip Barber Formula 2000, a 150-horsepower 4-cylinder
open-wheeled race car capable of top speeds reaching 135mph.*® Further details and rationale

for this dataset are explored below.

4.1 Data collection process

iRacers have access to several datapoints about all active iRacers and their races, from
macro-level trends to the times and incidents that make up an individual race lap. Data
from iRacing are ideal for investigating risk-taking behavior, given the quantity of variables
available and the quantity of races.'® These data are served to iRacers via active web pages.
To facilitate data collection, we used a publicly-available Python library to retrieve data on
members!”, cars, tracks, series, race results, incidents, and lap results. We then imported the
resulting CSV files into SAS and converted time stamps and safety ratings into equivalent

values better suited to regression analysis.!® The final data set is completely unique; we are

5Details regarding this car are available at http://iracing.com/cars/skip-barber-formula-2000/.
When an iRacer forces a disconnect due to poor racing performance or frustration, it is known as a
“rage-quit”. We define a rage-quit as a race tagged as a disconnect with at least one incident in the race.
"Pursuant to Institutional Review Board requirements, personally identifiable information, including
names, has been purged from the dataset and retained in a secure data repository by one of the authors,
with a linking variable. Personally identifiable information is not necessary to conduct the analysis here.
18The program library used to collect our data is posted at http://github.com/jeysonmc/ir_webstats.
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not aware of any other academic studies employing data from iRacing.!’

During the ten 12-week series spanning a time frame of December 2017 to May 2020, over
one million races were recorded across all four disciplines in iRacing. Each series differs with
respect to license requirements, skill level, incident limits, duration of races, and frequency
of races. This particular series was chosen for a number of reasons: (1) The series uses a
mix of free tracks and paid tracks. (2) The car is not included in iRacing’s free content and
must be purchased for $11.95, representing a financial commitment of the drivers that race
in this series. (3) The series requires a D-level or better license, but is popular among all
driver levels. In D-level races, drivers may “fast repair” their car one time in a race simply
by stopping in their designated pit stall and receive an instantaneous repair. Subsequent
repairs can take several minutes to repair in the pit stall, depending on the severity of the
damage. This fast repair feature does not exist in C and higher level race series®. (4) Races

¢

are duration-consistent — around 25 minutes per race. (5) 99.44% of races “went official,”
meaning they had a minimum of six drivers and race results impacted drivers’ iRatings and
safety ratings. (6) Races occur every hour, providing us with race data for all parts of the

day and from around the world.

4.2 Data description

Our original dataset includes information about each race and driver in the series over a time
period of December 2017 through May 2020. Each race’s course, car model, and strength
of field is identified. Within each race, iRacers’ race statistics are recorded, including pre-
and post-race iRating and safety rating, the number of incidents, type of incidents, quali-
fying time, starting position, average lap time, fastest lap time, etc. The original dataset
includes 945,482 individual race results over 56,084 races/splits from 37,242 individual iRac-
ers. We removed unofficial races from the dataset; this filter reduced our sample size to
945,097 iRacer results over 55,985 races/splits and 37,241 iRacers. Since sim racing relies on
constant internet connections and sufficient local processing power to maintain an iRacer’s
participation in the competition, we have deleted observations where only one lap was at-

tempted before disconnecting and for which no incidents occurred. Since an iRacer who

19 According to iRacing’s Terms of Use, use of the data for purposes other than racing requires explicit
written permission from iRacing. iRacing has generously granted permission to us to use the data for the
purpose of academic research on risk-taking.

20 All races in the Skip Barber series are D-level races, but higher license level drivers participate.
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crashes in the first lap might be tempted to “rage-quit”, disconnects with one lap attempted
and at least one incident were assumed to be intentional and were retained in the dataset.
By deleting assumed connection-related (i.e., not “rage-quits”) disconnects, our final sample
size falls to 806,253 individual race results over 55,985 races/split and 36,005 iRacers.

For unskilled participants, in may be difficult to disentangle incidents resulting from lack
of skill and incidents resulting from risk-taking behavior. Thus, we omitted all racers who
held the rookie license class, since iRacers are not assigned an iRating until they reach their
D license. In addition, we deleted race results for which the driver’s result was “Disquali-
fied/Scoring Invalidated”. These filters reduced our sample size to 764,972 race results over
55,985 races/splits and 34,565 iRacers. Finally, since racers learn strategy over repeated at-

tempts, we deleted race outcomes for users with a limited number of races during the sample

period.
Table 1: Descriptive Statistics

Variable Mean Std Dev  Minimum Maximum
Race Incidents per Corner 0.4485 0.2193 0.0087 2.4737
iRating (000) 1.6230 0.9231 0.0280 8.2330
iRating Std. Dev. (by race)  0.4185  0.4207 0.0099 2.3684
Safety Score 1.8481 1.0290 -1.0000 5.9900
Week 12 indicator 0.0724 0.2591 0.0000 1.0000
Cusp Up Indicator 0.1001 0.3002 0.0000 1.0000
Cusp Up * Safety Score 0.1853 0.6405 -0.2000 5.9900
Cusp Up * Week 12 0.0061 0.0776 0.0000 1.0000
Cusp Down Indicator 0.0812 0.2732 0.0000 1.0000
Cusp Down * Safety Score 0.1216 0.4856 -0.9100 3.1000
Cusp Down * Week 12 0.0073 0.0849 0.0000 1.0000
Number of Cars Purchased 13.2941  10.7443 1.0000 67.0000
Size of Split Field 17.2159 2.1726 6.0000 20.0000
Track Paid Indicator 0.7464  0.4351 0.0000 1.0000
Observations 764,999

4.3 Dependent variable

Our dependent variable in the analyses reported below is ”incidents per corner (IPC)” or

the number of incident points a driver records in a race split, divided by the number of
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corners the driver achieved in that split. That is, a driver who crashes, disconnects, or fails
to finish the race may have a different number of corners in the race than another driver
who completes the race. This variable is used to approximate the risk-taking level by the
driver. Recognizing that this is not a perfect correlation to risk-taking, since an incident
can be recorded as a result of another driver’s risk-taking, we still believe this ratio to be a
good approximation. In the complete sample, drivers experience an average of 0.04 incident
points per corner. When we eliminate racers without a sufficient number of splits in a series,

the average incidents per corner falls slightly.

In Table 1, we list the independent variables used in our model, along with their interpreta-
tion and our intuition for why they might be explanatory. Our independent variables include
driver level, split-level, and driver-split level variables. Driver level variables do not vary over
the ten seasons, but driver-split level variables may vary for each iRacer in each race (split).
Split-level variables are the same for each iRacer in a split. Descriptive statistics are given
in Table 1.

4.4 Driver-level independent variables

Driver-level variables are collected once for all drivers after the conclusion of the series under
investigation. While these variables may vary across the dataset, time-varying data were
not available at the split-level at the time of collection. That said, we do not expect that
any variation across these driver-level variables to be related to risk-taking behavior at a

meaningful level.

iRacers with a larger financial investment in the game may have different risk preferences
than those with smaller financial investment. While our data do not include all financial
investments, such as hardware equipment, internet speed, and subscription discounts, we do
know how many additional vehicles racers have purchased within the game.?! On average,
racers have 13.43 purchased vehicles in the game, and as many as 67. Relatively few racers
have a very large inventory of vehicles; only 335 racers have 50 or more vehicles. The base

cost of a car is $11.95, with increasing volume discounts for three, six, or 40 cars purchased.

21Due to volume discounts, the relationship between number of vehicles and financial investment may not
be linear.
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Because risk preferences may vary based on regional location, we employ regional fixed effects
based on the racer’s region of registration. Region size ranges from a single state in the U.S.

to a group of small countries in the Middle East.

4.5 Split-level independent variables

There are split-level statistics that can impact both a driver’s risky decisions and the overall
probability of an incident. For each race session, iRacers are divided into splits based on
license level and qualifying times. Some splits will have a tightly concentrated group of
racers, where racers have similar iRatings. Other splits will have wider variation in skill
level. Thus, we measure the standard deviation of iRating (divided by 1,000) within a split.
A high standard deviation within a split indicates a wide range of racer skill, while a low
standard deviation within a split indicates a high level of competitiveness. The average

standard deviation within a split is 0.42.

Week 12 is an indicator variable taking the value of 1 if the split was run in the last week
of the season (the ”finale”). Drivers may shift their risk-taking strategy in the final week
of the season, because license promotions and relegations usually happen at the end of the
season. As a consequence, racers may shift their risk preferences and races may become more

aggressive or tight in this last week.

Clearly, if a race has more incidents, the probability of a racer being involved in an incident
increases. To control for split-level risk, we also include the total number of incident points
recorded in a split divided by the number of corners in a split. On average, there were 0.0415
total incident points per corner at the split-level. Also, since more racers in a split increase
the probability of an incident, we control for that increased risk by including the size of the

field. The field size ranges from 6 to 20, with an average race field of 17.23.

At the split-level, we can also determine whether the track is a paid track or not. Paid tracks
cost between $11.95 and $14.95, depending on the size and development effort involved. In
a race on a paid track, all racers have additional financial investment in the game. 74% of

driver-split results are on a paid track.

In addition to racer-split level variables and split-level variables, we also interact each cusp

indicator with safety score and with the week 12 indicator. These four interactions allow us
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to explore the relationship between cusp and license level, as well as the relationship between

cusp and final week effects.

4.6 Driver-split-level independent variables

The average iRating in our sample is 1,637 (divided by 1,000 for analysis purposes) and
ranges from 28 to 8,729. While iRating is a zero-sum game, by dropping less experienced

iRacers from our data, we have introduced some skewness into the iRating variable.

Safety score is a measure of the driver’s license level at the beginning of the race. A driver
with a low score has a safety record just above a rookie, while a driver with a high score may
be a pro, or has raced cleanly for a long period of time. Within the game, license class is
indicated by a letter (R]ookie], D, C, B, A, and P[ro]). This class is determined by a mapping
of license level and license sublevel, with all promotions and most relegation happening at
the end of the season. In the data, license level is reported as an integer between 5 and 28
and license sublevel is reported as an integer between 0 and 500. We combine these variables
and convert them to a safety score, subtracting 4 from the license level and dividing by 4,
retaining the integer. We then add the fraction that results from dividing the license sublevel
by 500. Thus, our safety score matches the Safety Rating as shown in Figure 3. Consider, for
example, a iRacer with a license level of 10 and a sublicence level of 282. To calculate their
safety score, we follow this process: To calculate the integer of the safety score: 10 — 4 = 6,
6\4 = 1, where \ represents the integer division operator. To find the decimal portion of the
safety score: 282/500 = 0.564. Thus, this iRacer’s safety score is 1.564.

Cusp Up is an indicator variable that is equal to 1 when the driver is close to achieving the
next license level and 0 otherwise. As shown in Figure 3, once a driver moves to the next
license level, their safety score will be increased by a fixed value to avoid frequent changes in
license level. This discontinuity provides a kink that we will explore in the hypotheses. Cusp
Down is, likewise, an indicator variable that is equal to 1 when the driver is close to relegation
to the next lower license level and 0 otherwise. We use the license sublevel to determine the
cusp, and the size of the cusp depends on the license class. A Class D driver is on the cusp if
they are within 25 license sublevel points of a promotion or relegation. The cusp is 20 points
for Class C drivers, 18 points for Class B drivers, 16 points for Class A drivers, 15 points

for Pro Level 2 drivers and 10 points for Pro Level 1 drivers. The decreasing size of the
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Table 2: Cusp Levels

License Level Cusp Distance

Pro 1 10
Pro 2 15
A 16
B 18
C 20
D 25

cusp corresponds to the decreasing point shift around the license level promotion /relegation.
Table 2 shows the cusp limits for each license level. Approximately 9% of the racer splits
in the sample have the racer on the cusp of moving up, and approximately 7% of the racer

splits have the racer on the cusp of moving down.

5 Hypotheses

Assuming that racers are expected iRating maximizers, their goal in the game is to achieve
the highest iRating possible under all given rules and constraints. Since iRating is (essen-
tially) a zero-sum game, this means that a racer’s iRating gains come at the expense of other
racers’ outcomes (gains and losses). A racer can add iRating points by placing well in races,
but can also lose points by placing poorly. Placing well, especially in competitive races,
requires risk-taking and racers can invest in loss control by driving more conservatively. A
racer can increase iRating faster by racing in more selective races, and access to those ”splits”
is achieved by higher license levels/safety scores. Safety scores are negatively impacted by

incidents: to increase iRating more quickly, racers will need to limit the number of incidents.

5.1 Consistency Control Hypotheses: H1-H3

First, racers with high iRatings tend to be the most experienced, and are thus more likely to
minimize unforced errors. As a result, we anticipate that racers with high iRatings experience
fewer incidents per corner, giving rise to our first (alternative) hypothesis - always assuming

that the same hypothesis in null form assumes independence:
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Hypothesis 1 Incidents per corner (IPC) is negatively related to iRating.

This hypothesis constitutes a consistency control within our data, and serves as a basis for
further analysis. Second, given that incidents arise from the actions of others, the more
homogeneous a racer experience is within a split, the less likely a racer may be to suffer
many incidents. Conversely, the more heterogeneous racers are within a split, the more
likely a racer will be to experience many incidents. This leads us to our second consistency

controlling hypothesis:

Hypothesis 2 IPC is positively related to split-level standard deviation of iRating.

Third, similar to the relationship between incidents and iRating, it should be expected
that racers with a higher safety score tend to drive more skillfully and/or carefully, thereby

reducing the propensity for incidents. Thus, we propose the next (alternative) hypothesis:

Hypothesis 3 There is a negative relationship between IPC and safety score.

It will be shown that the data consistently support these (alternative) hypotheses 1-3 (with
p-values {1%). The next section will study reference-dependent preferences and introduce

our first research questions.

5.2 Reference-dependent Preferences: H4-HG6

The conceptual frameworks delineating reference-dependent preferences, characterized by a
heightened sensitivity to losses in comparison to equivalent gains, trace their roots to the
seminal prospect theory advanced by Kahneman and Tversky in 1979. Subsequently, these
models have garnered substantial empirical support, elucidating puzzling phenomena such
as the endowment effect. Their explanatory power extends to diverse domains, encompass-
ing anomalies in labor market decisions, consumer behavior, and financial contexts, among

others.

In the nascent stages of decision science, a discourse emerged highlighting incongruities in

risk aversion observed across various utility elicitation methods. For instance, Sprenger
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(2015) shows that, within the subset of expectation-centric models, a noteworthy predic-
tion can be made - referred to as the "endowment effect for risk” - suggesting that alter-
ations in reference points from certainty to stochastic conditions can induce variations in
risk attitudes. Through two meticulously designed risk preference experiments, deliberately
mitigating commonly discussed confounding factors, he empirically establishes the existence
of an endowment effect for risk both across and within subjects. These findings not only
contribute to the delineation of expectations-based reference-dependent models but also fa-
cilitate the assessment of recent theoretical extensions. Moreover, they offer valuable insights
that may contribute to resolving the longstanding debate within decision science regarding

inconsistencies in utility elicitation methodologies.

In simulated auto racing, racers consider reference points such as being likely to be promoted
or delegated. We make a series of predictions related to behavior on the cusp of a promotion
or relegation. An important prediction is that racers on the cusp of a promotion will tend
to self-insure by taking less risk, a behavior likely to be demonstrated by a smaller number
of incidents at the cusp of promotion because the racer will want to increase the probability
of a large safety score jump. Conversely, racers at the risk of relegation will likely have a
larger margin of error and will take more risk. Given a reference point, this behavior is
consistent with Prospect Theory where agents exhibit risk aversion when facing potential
gains (lower risk taking) and risk seeking when facing potential losses (higher risk taking).

The prediction gives rise to a compound fourth (alternative) hypothesis as follows.

Hypothesis 4a Racers on the cusp of promotion take less risk than racers not on the cusp,

entailing fewer IPCs.

Hypothesis 4b Racers on the cusp of relegation take more risk than racers not on the cusp,

entailing a higher number of IPCs.

Building on the theory of Készegi and Rabin (2006) and Kd&szegi and Rabin (2007), with
respect to the interaction between cusp and safety score, we also hypothesize that higher-
classed racers on the cusp of promotion will take more risk to ensure promotion than lower-
classed racers; consistently, higher-classed racers on the cusp of relegation will take [ess
risk to avoid potential relegation and maintain their accomplished status quo in the game

(endowment effect):
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Hypothesis ba Higher-classed racers on the cusp of promotion take more risk than racers

not on the cusp.

Hypothesis 5b Higher-classed racers on the cusp of relegation take less risk than racers

not on the cusp.

The idea behind this effect is that, in particular in the case of H5b, a form of the "endow-
ment effect for risk” kicks in: Individuals assign a high value to what they have already
accomplished in the game, and as a consequence, due to higher (financial and emotional) in-
vestment, they tend to be more risk averse when on the cusp on relegation. It is noteworthy
that, from a driver’s perspective, delegation may be more likely but is still stochastic due
to the behavior of other drivers. The endowment effect may also represent the tendency for

drivers who own a license level to value it higher than individuals who do not own it.??

Another hypothesis focuses on the financial investment a racer has made in their game
participation. While all racers pay a standard subscription fee (with volume and other
discounts available), we do not observe their subscription details. Furthermore, we do not
know what exact equipment they use to play the game (which can range from a keyboard
and mouse to a full simulated race car rig, as shown in Figure 2). However, we can observe
how many cars and/or tracks a racer has purchased. Due to volume discounts, and the
opportunity to purchase "everything” for a discounted lump sum, this relationship is not
linear; however, we attempt to estimate the relationship between financial investment and

risk-taking using the number of add-ons purchased in the game, leading to

Hypothesis 6 Racers with more paid cars and/or tracks take more risk.

5.3 End-of-contract Stage Decision-Making: H7-HS8

Our next hypotheses relate to week 12 risk-taking. Remember that this week is the most

important within a 3-month period (a "season”). Since a racer’s safety score at the end of

22Gee, for instance, Morewedge and Giblin (2015). Experimental evidence supports the existence of this
investment effect for risk taking decisions. Knetsch and Sinden (1984) demonstrate that a higher fraction
of individuals are willing to pay $2 to keep a lottery with unknown odds of winning around $50 than to
accept $2 to give up the same lottery if they already own it. Kachelmeier and Shehata (1992) show that
selling prices for a 50-50 gamble over $20 tend to be significantly higher than subsequent buying prices out
of experimental earnings for the same gamble.
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week 12 dictates their license level for the next season’, we anticipate that behavior may shift
from iRating maximization to safety score maximization. Do racers take less or more risk in
week 127 Further complicating the prediction, drivers can earn independent recognition for
their season-level performance, which is related to neither iRating nor license level. Some
drivers may be highly motivated by season recognition, but we cannot distinguish among
motivations in our dataset. Since we have no prediction, we will dispense with the alternative

form and predict the null as follows.

Hypothesis 7 There is higher risk-taking in week 12 relative to other weeks.

We further analyze the impact of license level on cusp risk-taking and also the impact of
week 12 on cusp risk-taking. Again, since it is difficult to disentangle active risk-taking from
the riskiness of the more challenging track used in week 12, we will propose only the null
hypothesis:

Hypothesis 8 There is no relationship between cusp position and risk-taking in week 12.

These hypotheses refer to the insight that reference dependent preferences imply bunching

of performance at or around the reference points, ”where it matters”.

6 Model and Results

6.1 Econometric specification

We estimate the relationships using the following standard OLS model:

IPC;, = a+ B,0ldiRating; , + B20ldSafety, , + Bzcusp;,, + YinB + Xiny (1)

where Incidents per Corner (IPC) is the dependent variable, Y;,, are interactions with the
cusp indicator and X ,, are racer, split, and racer-split controls. We control for regional fixed

effects with an indicator variable for each region represented in the dataset.??

23In a few instances, we have combined some small regions with other demographically similar regions.
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Our initial results do not include cusp interactions and are summarized in Table 3. Each
column of results represents a successively smaller sample, with columns indicating results
from a sample that eliminates racers with fewer races in the series. Column 1 includes all
qualifying racers as described earlier. Column 2 removes racers with fewer than five races
in the series. Column 3 removes racers with fewer than ten races in the series. Finally,
column 4 removes racers with fewer than 20 races in the series. Each specification yields

qualitatively similar outcomes, speaking for consistency of our results.

6.2 Reference-Dependent Preferences: H1-H6

Hypothesis 1 is supported by the data: The results indicate that the iRating prior to a race
is negatively related to the number of incidents per corner. Furthermore, Hypothesis 2 is also
supported by the positive and significant coefficient on iRating standard deviation at the
split-level. Hypothesis 3 is supported, as well, showing a negative and significant coefficient
on safety score. In other words, as expected, racers with high safety scores experience fewer

incidents per corner.

Of most interest for this study is the relationship between incident experience and the cusp.
The negative and significant coefficient on Cusp Up corresponds with the positive and sig-
nificant coefficient on Cusp Down, jointly affirming Hypotheses 4a and 4b. The remaining
variables shown in Table 3 support the corresponding Hypothesis with regard to financial
investment in the game. The Size of Split variable is a control, but follows intuition in that

the larger the split field, the more incidents racers experience.

Turning now to Table 4, we have added the interactions with the cusp indicators to test
hypotheses 5 and 6. All other variable are consistent in both effect and significance when we
add these interactions. The interactions of Cusp Up and Cusp Down with safety score yield
the predicted results and support alternative hypotheses 5a and 6a. Racers on the cusp of
promotion take more risk when they hold higher safety scores, and thus would enjoy a higher
license level. Racers on the cusp of relegation take less risk, presumably to reduce the risk
of relegation. This is consistent with an aspiration level where racers want to win at least

something or at least not fall below a certain subsistence level - the aspiration level (Diecidue
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and Van De Ven (2008)). Notably, when we restrict the sample to racers with at least 20
races in the series, the interaction between Cusp Up and Safety Score is not significant any

more.

Finally, the positive and significant relationship between financial investment in the racing
game and IPC supports Hypothesis 6: A higher individual investment is associated with
more [PC, ceteris paribus. An underlying reason might be because a driver has a higher

incentive to improve their iRating in the game.

6.3 Findings relating to final-contract-stage behavioral patterns:
H7-HS8

Regarding the sign on the week 12 indicator (hypothesis 6), we find a positive and significant
relationship, suggesting more aggressive racing in week 12, the final contract stage. This
is interesting as it suggests more risk taking ”"when it matters”, at least for the season
recognition - an incentive that seems to overcompensate the effect of attaining a better license
level in the short run. In accordance with Frick (2011) who use the German Bundesliga for
soccer player’s effort levels, we can at least say that when the outcome of individual effort is
uncertain and risks are involved, racers tend to exert more effort to win and thereby increase

their risk-taking at the margin, aiming for potential better status in final contract stages.

This effect is, however, not confirmed when a racer is also near a cusp or reference point. In
other words, racers do not also adjust their effort at a certain point in time (for instance,

the end of a quarter/season) based on their proximity to a reference point (Hypothesis 7).

Finally, we see from the interactions with week 12 that we cannot reject the null Hypothesis
8 for any specification. There is no evidence that we can disentangle incentive effects from
track difficulty in week 12. Future research can attempt to identify other factors that might

reveal a meaningful interaction with week 12.

27



7 Concluding Remarks

This paper utilizes data from over 56,000 simulated auto races globally to examine risk-
taking behaviors at the margins, aligning with reference-dependent preferences. The study
reveals that participants’ risk-taking behavior changes when a desired intermittent outcome
is introduced, sometimes at the expense of achieving a more favorable expected end state.
Specifically, we find that intermediate kinks in the utility function lead racers to take less risk
when opportunities to increase temporal wealth arise, and more risk when there is a potential
to lose temporal wealth. This provides important insights into the incentives for risk-taking
at the margins of wealth kinks (e.g., retirement age, family changes, etc.). Risk aversion

intensifies at these kinks, while risk-taking escalates with greater financial investment.

Individual incentives are notably linked to the license level available: Racers on the verge of
attaining higher license levels tend to take more risk, whereas those at risk of being relegated
to a lower license level exhibit less risk-taking due to the fear of losing their current status
for the next season. Furthermore, risk-taking increases with the extent of actual financial

investment in the game. Risk aversion appears to strengthen at kinks in the payoff curve.

Our study reveals findings consistent with existing literature on the impact of final con-
tract stages on individual decision-making. Previous economic studies in sectors like sports
and public procurement have noted increased individual effort during these critical contract
stages. For instance, a football or soccer player nearing the end of their contract may exert
more effort to demonstrate their value, while a coach, after securing a long-term contract,
may reduce effort initially. In scenarios where individual effort outcomes are uncertain and
involve risks, it makes sense for individuals to increase risk-taking when aiming for a po-
tential better status and reduce it in other situations to protect their current status. Our
study evaluates changes in individual risk-taking as participants approach situations where
performance becomes more critical. It contributes to the literature on risk-taking by pro-
viding insights into behavioral adjustments during final contract stages related to individual

risk-taking at the margins.

These findings offer significant insights into the incentives for risk-taking at the margins of
wealth kinks. They provide a foundation for analyzing other wealth kinks, including contract
negotiations, age-related breaks in investment planning, and financial decisions influenced

by changes in family size due to birth, death, or the maturation of children.
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